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 This work drew attention to the Chebyshev norm minimization, a method of adjustment 
of observations still little explored in the geodetic literature. Chebyshev norm 
minimization refers to the minimization of the maximum weighted absolute residual of 
adjusted observations. In addition to contributions to the formulation of Chebyshev norm 
adjustment by linear programming, numerical examples of its application in a leveling 
network were presented and compared with the respective Least Squares adjustments in 
this work. We verified that residuals analysis of Chebyshev norm adjustment is even less 
effective than of Least Squares for outlier identification. We also highlighted other 
characteristics of the method that had never been explored in geodetic literature before. 
In special, Chebyshev norm adjustment presented lower maximum absolute residual, and 
more homogeneous absolute residuals than LS when applied with the usual distance-
dependent stochastic model. More experiments should be conducted in future work to 
confirm these tendencies. We also analyzed the adjustment by Chebyshev norm 
minimization with unit weights, which generates the minimum maximum absolute 
residual for a network. As some characteristics of Chebyshev norm adjustment seen 
promising, other suggestions for future work were also made. 
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INTRODUCTION 

In the estimation of geodetic networks, the number of observations is higher 
than that of unknowns. This is the basis for assessing the precision and reliability 
of geodetic networks through redundancy. The inevitable measurement errors 
make the system inconsistent (GEMAEL et al., 2015). Network adjustment is 
usually performed by the Least Squares (LS) method, which minimizes the sum of 
the squared elements of the residual vector v, weighted by weight matrix of 
observations P (Equation 1). Its results have the minimum variance for the 
estimated parameters, and maximum likelihood, considering the occurrence of 
only random errors normally distributed in the observations (GHILANI, 2010). 

 

LS: min ሺvTPvሻ                                (1) 

 

Another possible minimization of vector norm, less established in the 
geodetic literature, involves the adjustment by Chebyshev Norm Minimization 
(CNM). CNM adjustment refers to the minimization of the maximum weighted 
absolute residual (MWAR) of observations. For uncorrelated (independent) 
observations, being m the number of observations, and p the weight vector 
composed of the elements of the main diagonal of P, MWAR and the CNM 
adjustment are expressed by Equations 2 and 3, respectively. In leveling networks 
observations are usually independent, and their weights pi are commonly given 
by the inverse of the length of the respective leveling line (GHILANI, 2010).  

 

MWAR=max(pi*|vi|), 1≤i≤m (2) 

 

CNM: minሺMWARሻ=min(max (pi*|vi|) ), 1≤i≤m (3) 

 

In the context of leveling networks, Ebong (1986) was the only work on CNM 
that has been found. In that paper the author has suggested that the method can 
provide an adjustment with no significant bias, and information about errors in 
observations with quality equivalent to LS. However, LS does have other 
advantages previously mentioned, such as minimum variance and maximum 
likelihood. Hence, probably that is the reason why there has been no other paper 
on CNM in geodetic networks since 1986, year of publication of that one. Besides, 
later, in the context of polynomial approximation, Abdelmalek and Malek (2008) 
showed that the adjustment by CNM tends to distribute errors of outliers among 
other observations even more than LS. Therefore, it is even less effective than LS 
for outlier identification. This was confirmed in a leveling network in our 
experiments.  

Then we investigated the application for CNM in networks with no outliers. 
Since CNM tends to distribute errors even more than LS, it may be subject of 
investigation if this provides more homogeneous results for the adjustments, 
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something that may be useful under the premise of non-existence of outliers. 
This point, not previously addressed in the literature, was also tested in the 
experiments.  

However, there is also a specific CNM adjustment, not explored yet in the 
geodetic literature, which provides other interesting outcome: the minimization 
of the maximum absolute residual (MAR). This can be achieved in the adjustment 
by CNM with unit weights for all observations. Thus, minimization occurs in the 
absolute residual vector |v|, i.e., the MAR (Equation 4) of the network is 
minimized. This means an adjustment with minimum maximum distortion of 
observed values. Consequences of this property for the adjustment were 
analyzed in the experiments as well.  

 

MAR=max|vi|, 1≤i≤m (4) 

 

For independent observations (general case of leveling networks), weights of 
observations are relative, so that multiplying them all by the same scale factor 
does not change the estimated parameters and residuals of the adjustment. 
Hence, MAR minimization is obtained for any stochastic model with equal 
weights, not necessarily the unit ones.  

Finally, the suggestion that a network is "free of outliers" is ambiguous. In 
this research we considered a network to be free of outliers if none was 
identified by data snooping iterative procedure (Teunissen, 2006) with 
significance level of 0.001. For a review on data snooping procedure we 
recommend (Rofatto et al., 2018).  However, it depends on the perspective 
defended by the geodesist on the issue.  

MODEL DESCRIPTION 

In this section, we presented the formulation of the adjustment of 
observations by CNM for implementation by the SIMPLEx linear programming 
method. We considered that the system of equations is linear and that the 
observations to be adjusted are independent (the matrix of weights P is 
diagonal). The occurrence of such premises is common in leveling networks and 
was the case in the experiments of this research. Further details on linear 
programming and SIMPLEx can be found in Dantzig (1963) and Amiri-Simkooei 
(2003). 

The content of this section was based on the L1 norm minimization 
formulation by Amiri-Simkooei (2003). The necessary adaptations for CNM were 
inspired by Ebong (1986) and Abdelmalek and Malek (2008). In addition to 
greater detailing specifically for the case of geodetic networks, the main 
contribution presented here is the inclusion of weights of observations in the 
formulation. 

The functional model of Gauss-Markov Model is defined by Equation 5, 
where Amxn is the coefficients matrix of the network parameters (unknowns) 
vector xnx1, Lmx1 is the vector of observed values, and vmx1 is the vector of 
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residuals, being m the number of observations, and n the number of unknowns. 
Datum constraints and not fixed control station heights may be added to the 
model by different approaches as presented in Ghilani (2010). 

 

Ax=L+v                  (5) 

 

As we could see in Equation 3, for the adjustment by CNM the maximum 
value among the weighted (by means of the weights vector pmx1, composed of 
the elements of the main diagonal of P) absolute residuals must be minimized. In 
order to solve this linear programming minimization problem using the SIMPLEx 
method, all variables xi and vi (components of vectors x and v, respectively) need 
to be non-negative. Since residuals and network parameters in practice do not 
have signal constraint, artificial variables must be inserted for x and v (Equation 
6) to address such limitation. As a consequence, the elements pi*|vi| of Equation 
3 are given by Equation 7. Therefore, after solving the problem for the non-
negative variables αi, βi, ui, and wi, and returning to the originals xi and vi, the 
latter can assume negative values. Vectors α and β have same dimensions of x, 
and u and w as of v.  

 

x=α-β;v=u-w  (6) 

 

  pi*|vi|=(pi*ȁui-wiȁ), 1≤i≤m  (7) 

 

Then, a one-dimensional variable s is created, which must be minimized and 
characterize the objective function (Equation 8), being 02(n+m)x1 a vector of zeros, 
and [1]1x1 a matrix whose unique element is "1". The strategy is to impose that 
each element pi*|vi| is less than or equal to s, by means of constraints of the 
problem of linear programming (Equation 9). In the latter, 0mxn (left side of the 
inequality) are matrices of zeros, 02mx1 (right side of the inequality) is a vector of 
zeros, Pmxm is the weight matrix of observations, and [-1]mx1 is a vector whose 
elements are all equal to " -1". 

 

f=ሾ0T ሾ1ሿሿ
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The other constraints of the problem are presented in Equation 10, where 
Imxm is an identity matrix, and 0smx1 is a matrix of zeros. They are equivalent to 
the functional model of Equation 5 but with adaptations to the standard linear 
programming format. In order to be consistent with the constraints of Equation 9 
and with the objective function (Equation 8), variable s needed to be included in 
Equation 10 as well. Since s does not participate in the functional model, its 
respective column 0S has all elements equal to zero.  

 

ሾA -A -I I 0Sሿ

ۏ
ێ
ێ
ۍ
α
β
u
w
s ے
ۑ
ۑ
ې

=ሾLሿ  (10) 

METHODOLOGY 

In the experiments a leveling network initially with no outliers was 
simulated. The simulated network is shown in Figure 1 and Table 1. The height of 
A was considered fixed and with value hA=0. Thus, it is a network with 20 
observations and 10 heights to be determined (unknowns), that is, the number of 
degrees of freedom is 10. Observations were simulated with only random errors 
(normal distribution). The standard deviation σi of the observations adopted in 
the simulations is given by Equation 11, where K (in km) is the length of the 
respective leveling line. 

 

σi=1.0(mm)*ඥKi   (11) 

 

Figure 1 – Simulated leveling network 

 
Source: Own authorship (2019). 
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In the first experiment, an outlier was purposely inserted in the sample of 
observations of the simulated network, in order to confirm that residuals analysis 
of CNM is even less effective than of LS for outlier identification. This was verified 
by comparing the residual of the outlier with residuals of the other observations 
of the network in CNM, and with its residual in the LS adjustment. The usual 3σ-
rule for outlier identification was applied. Both adjustments considered the usual 
distance-dependent approach for the weights of observations. 

Table 1 – Observations of the simulated network 

hi 
Distance 

(km) 

Value 

(mm) 
σi (mm) hi 

Distance 

(km) 

Value 

(mm) 
σi (mm) 

h1 49 163842.9 7.00 h11 62 110222.7 7.87 
h2 41 6454.3 6.40 h12 50 155935.7 7.07 
h3 38 57028.5 6.16 h13 35 52872.4 5.92 
h4 34 126217.1 5.83 h14 43 62894.6 6.56 
h5 22 101138.5 4.69 h15 20 3887.6 4.47 
h6 13 296883.4 3.61 h16 28 42706.4 5.29 
h7 23 398019.8 4.80 h17 19 98890.6 4.36 
h8 48 60443.6 6.93 h18 39 115772.5 6.24 
h9 15 173717.6 3.87 h19 27 113219.9 5.20 
h10 24 167271.4 4.90 h20 21 46430.1 4.58 

Source: Own authorship (2019). 

The second experiment was conducted in the initial simulated network with 
no outliers. We performed four different adjustments, two by CNM (Adj 1 and 2), 
and two by LS (Adj 3 and 4) for comparison:  

a) CNM with stochastic modeling in the distance-dependent approach, 
which establishes the weights of observations as inversely proportional 
to the length of the respective leveling lines (Adj 1); 

b) CNM with unit (equal) weights for network observations (Adj 2); 

c) LS with stochastic modeling in the distance-dependent approach (Adj 3); 

d) LS with unit (equal) weights for network observations (Adj 4). 

We separately compared the MWAR of Adj 1 and 3, and Adj 2 and 4, to 
demonstrate the MWAR minimization characteristic of the adjustments by CNM 
over the results by LS. We also compared the MAR of these four adjustments, in 
order to illustrate that Adj 2 provides the minimum MAR for the network.  

Based on the numerical results, we highlighted a property of the CNM that 
results in the repetition of weighted residuals equal to MWAR. We also validated 
the point that any adjustment by the CNM with equal weights leads to the 
minimization of the MAR. Finally, we compared the mean and the standard 
deviation of absolute residuals, and the discrepancy between the largest and the 
smallest absolute residual of the four adjustments, for further analysis.  

The experiments were performed using the software Octave (version 4.2.1) 
in an Intel(R) Core(TM) i3 CPU. Linear programming problems were solved by the 
SIMPLEx method, using the glpk routine. For the simulation of random numbers 
(with normal distribution) we used the randn routine, which applies the Ziggurat 
technique (MARSAGLIA; TSANG, 2000). The reader can contact the authors to 
obtain the Octave codes of the experiments. 
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NUMERICAL RESULTS 

EXPERIMENT 1 – LEVELING NETWORK WITH ONE OUTLIER 

In order to perform this experiment, a gross error of 50 mm was purposely 
added to h5, generating a simulated outlier in the data. Table 2 shows the 
residual vector v of CNM and LS adjustments. Absolute residuals higher than 3σi 
were marked with an asterisk.  

Table 2 – Residuals (mm) – Experiment 1 

vi CNM LS vi CNM LS 

v1 -20.23 25.49* v11 -24.25* 2.35 
v2 15.69 -1.69 v12 0.47 -4.65 
v3 34.13* 14.18 v13 8.83 7.68 
v4 -30.54* -15.39 v14 -6.79 4.03 
v5 -19.76* -26.53* v15 17.97* 5.06 
v6 -11.68* -9.79 v16 25.15* 5.89 
v7 20.66* 15.77* v17 -17.07* -2.23 
v8 43.12* 3.24 v18 -3.46 6.21 
v9 13.47* 2.74 v19 -15.28 -1.15 
v10 -10.32 -3.67 v20 -18.86* -2.64 

Source: Own authorship (2019).  

We can verify that both CNM and LS adjustments distributed residuals of the 
outlier among other “good” observations. However, the outlier absolute residual 
was higher in LS than in CNM. In addition, the outlier absolute residual was the 
highest in LS adjustment, while it was only the eighth highest in CNM. Hence, 
based on residuals analysis, LS adjustment presented better conditions for the 
outlier identification to be viable.  

Besides, considering the 3σ-rule, LS identified three outliers, and CNM 
identified twelve, while there was only one in the data. Hence, even though both 
CNM and LS identified correctly the outlier, CNM had a higher number of false 
positives. Therefore, residuals analysis of CNM proved to be even less effective 
than of LS for outlier identification.   

EXPERIMENT 2 – LEVELING NETWORK WITHOUT OUTLIERS 

Experiment 2 was performed in the initial simulated network of Figure 1 and 
Table 1. No outliers were identified in the network, considering the data 
snooping iterative procedure with significance level of 0.001. Table 3 presents the 
MWAR comparison of the adjustments with weights of the observations in the 
distance-dependent approach (Adj 1 and 3), and the same is done in Table 4 for 
unit weights (Adj 2 and 4). In both cases, the adjustment by CNM presented 
lower MWAR than by LS, as expected, which confirms its main characteristic. 
About units of measurement, since we dealt with residuals vi in mm, and weights 
of observations pi in 1/mm2 (mm-2), the unit of MWAR (Equation 2) was 1/mm 
(mm-1). 
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Table 3 – MWAR – Experiment 2 – distance-dependent weights 

 Adj 1 Adj 3 

MWAR (mm-1) 0.21 0.29 

Source: Own authorship (2019).  

Table 4 – MWAR – Experiment 2 – unit weights 

 Adj 2 Adj 4 

MWAR (mm-1) 6.98 11.32 

Source: Own authorship (2019).  

Several weighted absolute residuals in Adj 1 and 2 were equal to the MWAR 
of the respective adjustment, which is a property of the adjustments by CNM. For 
this experiment 2, the repetition of MWAR in each adjustment by CNM occurred 
11 times, that is, 11 observations had absolute weighted residual equal to the 
MWAR. Further details on such property of the adjustment by CNM can be found 
in Abdelmalek and Malek (2008). This property was seen in all CNM adjustments 
of our paper. 

Table 5 shows the residual vector v of the four adjustments. We can verify 
said repetition of the MWAR in Adj 2, because in this case (unit weights) the 
MWAR numerically coincides with the MAR (disregarding units of 
measurements). We also performed other adjustments by CNM with equal but 
not unit weights. Results for the residuals were identical to those of Adj 2, which 
confirms that the minimization of the MAR by CNM is obtained with any 
stochastic model that consider the weights of observations to be equal, even if 
not unit weights. 

Table 5 – Residuals (mm) – Experiment 2 

vi Adj 1 Adj 2 Adj 3 Adj 4 

v1 10.32 6.98 11.96 8.83 
v2 -0.21 1.97 -4.18 -2.55 
v3 8.00 6.98 10.86 11.32 
v4 -7.16 -6.98 -7.28 -6.50 
v5 -4.63 -6.98 -3.98 -5.81 
v6 -2.31 -2.10 0.43 0.69 
v7 -4.84 -6.98 -1.45 -3.02 
v8 -2.30 -1.35 1.44 2.33 
v9 2.84 3.08 0.85 1.52 
v10 -5.05 -6.98 -3.07 -4.03 
v11 7.15 6.23 6.27 4.85 
v12 -10.32 -6.98 -6.29 -5.32 
v13 7.37 6.98 6.08 6.20 
v14 2.13 3.03 3.91 2.96 
v15 4.21 6.98 4.12 6.62 
v16 4.77 6.98 4.41 5.35 
v17 -1.72 2.63 -0.56 -0.03 
v18 3.99 4.52 4.49 3.66 
v19 -5.68 -4.57 -1.31 -1.27 
v20 -4.42 -6.98 -1.74 -3.25 

Source: Own authorship (2019).  
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Table 6 compares the MAR of the four adjustments. Adj 2, also as expected, 
presented the lowest MAR among them. It is worth mentioning that Adj 1 
obtained lower MAR than the equivalent via LS (Adj 3). This result suggests that 
CNM tends to generate a lower MAR in general, even when equal weights are not 
adopted. 

Table 6 – MAR – Experiment 2 

 Adj 1 Adj 2 Adj 3 Adj 4 

MAR (mm) 10.32 6.98 11.96 11.32 

Source: Own authorship (2019).  

Table 7 presents some statistics of the absolute residuals of the four 
adjustments. Besides lower MAR, Adj 2 also implied a minimization of the 
standard deviation of absolute residuals, and minimization of the discrepancy 
between the largest and the smallest absolute residual of the adjustment. On the 
other hand, the mean of absolute residuals of Adj 2 was the highest among the 
four adjustments. Adj 1 had these same results, if compared only to its equivalent 
via LS (Adj 3). Hence, we can see that CNM tended to generate more 
homogeneous absolute residuals, but with a higher average value in general. 

Table 7 – Statistics of absolute residuals – Experiment 2 

 Adj 1 Adj 2 Adj 3 Adj 4 

Mean (mm) 4.97 5.31 4.23 4.31 
Standard deviation (mm) 2.76 2.14 3.21 2.80 

Discrepancy (mm) 10.11 5.63 11.53 11.28 

Source: Own authorship (2019).  

DISCUSSION 

In Experiment 1, we confirmed that CNM is even less effective than LS for 
outlier identification. About Experiment 2, in agreement with its main 
characteristic of MWAR minimization, the adjustment by CNM presented lower 
MWAR than that by LS for the analyzed network, both with distance-dependent 
stochastic modeling, and adopting unit weights for observations. The MWAR 
repeating property for some of the weighted residuals was verified in the 
adjustments by CNM.  

These properties had not been explicitly demonstrated previously in the 
geodetic literature, not even by Ebong (1986), but they seen not to have any 
practical advantage over LS. However, some results of the experiments showed 
that CNM adjustment does have some advantages.  

With the usual distance-dependent weights, CNM presented lower MAR, and 
absolute residuals more homogeneous than LS. However, the average absolute 
residual was higher than in LS. It suggests that CNM increases the homogeneity of 
the network, at the expense of an increase in the average absolute residual.  

A lower MAR can be considered an advantage, as it means a lower maximum 
distortion of observed values. A better homogeneity is especially relevant in the 
case of leveling networks, since their amount of constraints is usually relatively 
low. In the case of the High Precision Altimeter Network of the Brazilian Geodetic 



 

 
R. bras. Geom., Curitiba, v. 7, n. 4, p. 172-185, out/dez. 2019. 
 
  
 
 
 
 
 

Página | 181 

System, for example, there is only one constraint for the stretch that covers most 
of the Brazilian territory. As the distance from the constraint increases, this tends 
to generate benchmarks with worse precisions than others, as seen in IBGE 
(2018). Hence, CNM homogeneity of results may be useful to minimize this 
effect. 

In the adjustment by CNM with unit weights (Adj 2), the MAR numerically 
coincides with the MWAR (disregarding units of measurements). Thus, the MAR 
is also minimized in such adjustment. Adj 2 results were also the most 
homogeneous, but had the highest average absolute residual among the four 
adjustments analyzed. We also have shown that the minimization of the MAR is 
obtained with any stochastic model of equal weights for observations, not 
necessarily unit ones. 

CONCLUSION 

This work drew attention to the Chebyshev norm minimization, a method of 
adjustment of observations still little explored in the geodetic literature. Among 
others, we presented with numerical examples its main characteristic, which is 
the minimization of the MWAR of observations. We also approached the 
formulation of CNM for linear programming implementation via SIMPLEx 
method, with contributions and greater detail in relation to previous works. 
Based on the results of Experiment 1, we suggest that CNM adjustment is 
appropriate for networks in which possible outliers have been previously treated, 
because CNM proved to be even less effective than LS for outlier identification. 
All experiments were conducted in leveling networks. 

In Experiment 2, we could see that the adjustment by CNM tended to lower 
the MAR of the observations, an advantage over LS. It also implied a smaller 
discrepancy between the maximum and minimum values of absolute residuals, 
and lower standard deviation of absolute residuals. This increase in the network 
homogeneity may be especially relevant for leveling networks. These effects 
were even more expressive when equal weights were adopted for all 
observations. Actually, CNM with equal weights generates the minimum MAR of 
a network, which can be evaluated as a possible metric of the quality of the 
adjustment in future work. Besides, the tendency of decreasing the MAR, and 
improving the homogeneity in CNM even with not equal weights suggested in 
this work should be verified with more experiments using Monte Carlo Simulation 
in future work. 

However, differently from LS, the adjustment by CNM does not yet have a 
consolidated error propagation theory. Therefore, future work should be 
developed in order to allow the estimation of the precision of residuals and 
parameters estimated in the adjustment by CNM. The minimization of MAR and 
of standard deviation of absolute residuals in the adjustment may generate a 
better homogeneity between the standard deviation of leveling network 
estimated parameters, for example. Other practical advantages may be revealed 
as well.  

It is also subject to investigation the application of results of a "pre-
adjustment" of the network by CNM in the construction of the stochastic model 
for the adjustment itself by LS. It may contribute to the reduction of the MAR of 
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the adjustment, without giving up the advantages of the LS. Finally, the 
formulation and the experiments carried out in this research can be continued, 
with their extension to other types of geodetic networks.   
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Ajustamento pela norma de Chebyshev: o 
que esperar? Estudo de caso em uma rede 
de nivelamento 

RESUMO 

  Este trabalho tratou da minimização da norma de Chebyshev, um método de ajustamento 
ainda pouco explorado na literatura geodésica. A minimização da norma de Chebyshev 
corresponde à minimização do máximo resíduo absoluto ponderado das observações 
ajustadas. Além de contribuições para a formulação do ajustamento pela norma de 
Chebyshev por programação linear, exemplos numéricos de sua aplicação em uma rede de 
nivelamento foram apresentados e comparados com os respectivos ajustamentos pelo 
Método dos Mínimos Quadrados. Foi verificado que a análise de resíduos do ajustamento 
pela norma de Chebyshev é ainda menos apropriada para a identificação de outliers que 
aquela por Mínimos Quadrados. Outras características ainda não exploradas na literatura 
geodésica do método também foram apresentadas. Em especial, o ajustamento pela 
norma de Chebyshev apresentou menor resíduo máximo absoluto e maior 
homogeneidade entre os resíduos absolutos, quando aplicado com o usual modelo 
estocástico com pesos pelo inverso da distância das linhas de nivelamento. Mais 
experimentos devem ser conduzidos em trabalhos futuros para confirmar essas 
tendências. O ajustamento pela norma de Chebyshev com pesos iguais, que gera o 
mínimo máximo resíduo absoluto para a rede, também foi analisado. Dado que algumas 
características do ajustamento pela norma de Chebyshev parecem promissoras, outras 
sugestões para trabalhos futuros foram apresentadas.  

PALAVRAS CHAVE: Norma de Chebyshev. Ajustamento das observações. Rede de 
nivelamento. 
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