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 Structure from Motion (SfM) is widely used for 3D modeling from digital images, offering 
accessibility and compatibility with common devices like cameras and smartphones. 
However, the accuracy of the generated models significantly depends on the quality of the 
image set and the refinement processes, such as point cloud filtering, which are often 
overlooked in literature. This study evaluates the effectiveness of different capture devices 
for SfM-based 3D modeling and investigates the impact of sparse point cloud filtering on 
model accuracy. Models were created from image sets obtained using both a camera and a 
smartphone, with and without filtering. The results indicate that filtering is essential for 
achieving high-quality models from cameras, providing an RMSE of 0.1 mm and enhanced 
object detail. However, models derived from smartphone images showed competitive 
potential. These findings highlight the importance of refinement strategies in SfM-based 
modeling and contribute to optimizing its use across various capture contexts. 
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INTRODUCTION 

The Structure from Motion (SfM) Multi-View Stereo (MVS) technique has 
established itself as a versatile and accessible tool for creating three-dimensional 
models from sets of digital images. Its growing popularity is largely attributed to 
its flexibility in utilizing widely available capture devices, such as cameras with 
interchangeable lenses and smartphones, in contrast to traditional 
photogrammetry techniques that rely on metric cameras designed with high 
technical precision and elevated costs (Westoby et al., 2012). This accessibility, 
combined with the development of intuitive software, enables professionals and 
researchers from diverse fields to explore the technique’s potential in both indoor 
and outdoor environments, ranging from close-range captures (An et al., 2021; Liu 
et al., 2016) to long-distance applications (Garcia; Oliveira, 2021; Woodget; 
Austrums, 2017). 

SfM involves the estimation of camera poses and the reconstruction of sparse 
three-dimensional point clouds through image matching and optimization 
algorithms. A critical component of this process is Bundle Adjustment, which 
optimizes both intrinsic and extrinsic camera parameters, along with the 3D 
coordinates of the sparse points, by minimizing the reprojection error across all 
images (Triggs et al., 2000). While this refinement enhances the internal 
consistency of the reconstruction, it does not inherently eliminate outliers or 
inconsistencies that may persist in the matched feature correspondences. 

After SfM, the Multi-View Stereo (MVS) stage generates a dense point cloud 
by leveraging the estimated camera parameters. However, this phase can 
propagate and amplify errors introduced in prior stages, particularly when the 
input imagery contains regions with low texture, repetitive patterns, or insufficient 
inter-image overlap (Luhmann et al., 2023; Westoby et al., 2012).  

Given these challenges, post-alignment filtering techniques play a pivotal role 
in refining the resulting point cloud, which often retains noise, redundancy, and 
geometric artifacts not addressed during initial alignment or sparse optimization 
Di Filippo et al. (2022). These filtering methods enhance the geometric accuracy 
and visual quality of the final model by eliminating outliers and enforcing surface 
coherence—a critical requirement in applications demanding high precision. 

While these computational processes shape the structure of the model, the 
quality of the final output is also highly dependent on the image acquisition stage. 
Despite the ease of use provided by SfM, producing high-quality three-dimensional 
models requires meticulous attention to the technical aspects of the process. As 
highlighted by Creus, Sanislav, and Dirks (2021) and Moraes and Silva(2024), the 
use of precise reference points is critical for image alignment and the proper pre-
calibration of photographic equipment. Furthermore, the quality of the generated 
models is directly linked to the characteristics of the image set used, which must 
exhibit a high level of detail, adequate coverage of the modeled object or scene, 
and sufficient sharpness to ensure the accuracy of reconstruction algorithms 
(Micheletti et al., 2015). 

The consumer-grade capture devices, such as smartphones or cameras with 
interchangeable lenses, can streamline the image acquisition process and produce 
high-quality three-dimensional products (Jaud et al., 2019; Verma; Bourke, 2019). 
However, due to their sensors and optical systems limitations, these devices may 
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introduce inconsistencies in the captured images, often resulting in noisy and 
imprecise point clouds (Tavani et al., 2020; Woodget; Austrums, 2017). These 
issues are intensified by the detection and correlation algorithms, which may 
perform unreliable matches between elements of images, thereby negatively 
affecting the quality and accuracy of the resulting three-dimensional models. 

In practice, unfiltered point clouds often contain artifacts, including isolated 
points, duplicate surfaces, and structural noise, which can distort measurements 
and hinder accurate geometric interpretation. Nota, Nijland, and de Haas (2022) 
demonstrated that insufficient filtering may introduce geometric deviations 
exceeding 5 mm in short-range applications—errors that could critically affect the 
reliability of structural analyses or deformation monitoring. 

Point cloud filtering techniques are recommended during the SfM processing 
workflow to address these challenges, as discussed in Di Filippo et al. (2022) and 
Nota, Nijland, and de Haas (2022). However, users often overlook these 
approaches, leading to reduced accuracy and quality in the resulting models. The 
development of a rigorous methodology incorporating filtering metrics, such as 
those proposed by the United States Geological Survey (Over et al., 2021), is 
essential for creating more accurate and representative three-dimensional 
models. 

The integration of point cloud filtering processes, combined with careful 
consideration of the technical factors involved in SfM modeling, can significantly 
enhance the quality of the resulting three-dimensional products. This 
improvement can be particularly critical for enabling more precise evaluations and 
comparisons of the characteristics of widely used SfM capture devices, such as 
smartphones and cameras with interchangeable lenses. 

Accordingly, this study aims to evaluate the influence of point cloud filtering 
on the quality parameters of three-dimensional models generated using the SfM 
technique, focusing on image sets captured by common photographic equipment 
(Camera and Smartphone) in short-range scenarios, such as those used in 
structural laboratory testing. Additionally, it seeks to determine the most suitable 
technology for such applications by comparing the products generated by different 
devices. The goal is to identify the strengths and limitations of the produced 
models, providing insights to guide the selection of the most appropriate 
technology given current technological constraints. 

METHOD 

The primary objective of this research is to evaluate the differences and 
quality levels achieved in 3D modeling using the SfM technique, comparing the 
performance of an interchangeable lens camera with that of a smartphone as 
photographic capture equipment. This study focuses on assessing the final quality 
of the 3D models rather than examining the workflow or specific software 
configurations. All reconstructions were processed using Agisoft Metashape Pro, a 
well-established software that facilitates efficient point cloud filtering and model 
generation. For detailed information on SfM workflows and configurations, 
readers are encouraged to consult (James et al., 2017; Leon et al., 2015; Tinkham; 
Swayze, 2021). 
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DELIMITATION OF THE REGION OF INTEREST AND EXPERIMENTAL SETUP 

The photographic captures were conducted in the Department of 
Transportation Engineering laboratory at the São Carlos School of Engineering, 
University of São Paulo. The environment featured both natural and artificial 
lighting. To ensure uniform illumination and avoid shadows on the modeled 
object's surface, auxiliary lighting systems (softboxes) equipped with 7,000-lumen 
LED lamps and a color temperature of 5,000 Kelvin were used. These were 
strategically positioned to minimize shadows and light variations. 

A wooden board measuring 210 cm x 80 cm x 4 cm was employed to simulate 
an experiment in structural laboratory settings. This material was selected for its 
high surface texture variability, which aids in detecting corresponding elements 
between images during the SfM modeling process. Figure 1 shows the modeled 
object and the additional elements on its surface that were used to assist 
processing. 

Figure 1 – Assessment of the Reprojection Error of Sparse Point Cloud 

 
Source: Author (2024). 

The region of interest (ROI) was defined by using white adhesive tape and 
highlighted in the figure with a red rectangle at the center of the object. A grid 
pattern, drawn with a red permanent marker, was applied within this area to 
introduce artificial texture and enhance the detection of corresponding features 
during the SfM modeling process, as discussed in Hafeez et al. (2018). To increase 
the complexity of the modeled scene, cubes of varying heights and positions were 
distributed across the surface of the wooden board. These cubes, covered with 
silver tape, simulated diverse elements present in structural environments. 

Eight sets of acrylic rulers, represented in dark blue in the figure, were 
randomly placed around the ROI and aligned with the axes of the board. These 
rulers, featuring chessboard patterns and known dimensions, served as Scale Bars 
(SBs) for the calibration and metric scaling of the 3D models. An additional acrylic 
ruler, positioned at the center of the ROI and depicted in light blue, acted as a 
Control Bar (CB), providing a reference for verifying the model's dimensional 
accuracy. 
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DATA ACQUISITION 

To generate high-quality 3D models for comparative analysis of the 
performance of cameras and smartphones in short-range laboratory conditions, a 
systematic photographic acquisition method was employed. The imaging process 
followed a vertical grid pattern, as illustrated in Figure 2, and was replicated for 
both capture devices.  

Figure 2 – Photographic capture process, with the squares representing the positioning of 
the capture equipment 

 
Source: Author (2024). 

The photographic process, considered a crucial step for ensuring the quality 
of SfM-generated models (Caldera-Cordero; Polo, 2019), was based on the 
methodology described by Moraes and Silva (Moraes; Silva, 2024). Images were 
captured at 1 meter, with an overlap of approximately 80%, pre-calibrated devices, 
and combined vertical and oblique images taken at ±15° yaw (relative to the Y-
axis). 

For the conventional equipment, a Canon EOS R camera with a full-frame 
sensor (36 mm × 24 mm) and a 35 mm focal length lens was utilized. The resulting 
images had dimensions of 6,472 × 4,498 pixels, yielding a Ground Sampling 
Distance (GSD) of nominally 0.15 mm at the defined capture distance. 

The smartphone used for comparison was an Apple iPhone 15 Pro Max, 
equipped with a 9.8 mm × 7.3 mm sensor. The focal length of the smartphone was 
6.7 mm (equivalent to a 24 mm lens on a full-frame sensor), as recorded in the 
image metadata, and the image resolution was 5,712 × 4,284 pixels. This 
configuration resulted in a GSD of approximately 0.25 mm at the same capture 
distance. 

To ensure consistent image sharpness, both devices were mounted on a 
tripod, and operated using a 5-second timer to minimize motion blur. To eliminate 
inconsistencies from automatic adjustments, all photographic parameters were 
manually configured and fixed to the standard settings (Manual focus and 
exposure D+1). Additionally, images were recorded in RAW format—CR3 for the 
digital camera and DNG for the smartphone—to preserve the original sensor data 
without any in-camera post-processing. The use of RAW formats enables the 
retention of unaltered radiometric and geometric information, which is essential 
for ensuring data integrity in photogrammetric applications. 

As part of the pre-calibration procedure, the internal parameters of each 
device were estimated using Agisoft Metashape software, which adopts an eight-
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parameter model based on the formulation originally proposed by Brown (Brown, 
1971) This model includes the focal length (F), the principal point offsets (Cx, Cy), 
three radial distortion coefficients (K1, K2, K3), and two tangential distortion 
coefficients (P1, P2). Table 1 and Table 2 presents the estimated calibration 
parameters and their respective errors for the digital camera and the smartphone, 
respectively. 

Table 1 – Estimated calibration parameters and correlation matrix (partial) for the devices 
used Canon EOS R camera | (b) iPhone 15 Pro Max 

ID Value Error F Cx Cy K1 K2 K3 P1 P2 

F 6637.84 0.1530 1.00 0.05 -0.07 -0.42 0.43 -0.42 0.04 -0.04 

Cx 66.6299 0.2801  1.00 0.00 -0.07 0.08 -0.09 0.96 0.00 

Cy 19.5779 0.2364   1.00 -0.04 0.04 -0.04 0.00 0.94 

K1 -0.00353 0.0002    1.00 -0.99 0.98 -0.04 -0.04 

K2 0.14094 0.0010     1.00 -0.99 0.05 0.03 

K3 -0.03760 0.0015      1.00 -0.05 -0.03 

P1 0.00076 1.77E-05       1.00 0.00 

P2 0.00133 1.29E-05        1.00 

Table 2 – Estimated calibration parameters and correlation matrix (partial) for the devices 
used iPhone 15 Pro Max 

ID Value Error F Cx Cy K1 K2 K3 P1 P2 

F 5658.09 0.9864 1.00 0.07 -0.02 -0.53 0.51 -0.59 0.06 0.03 

Cx 5.7313 1.2127  1.00 0.01 -0.03 0.03 -0.03 0.89 0.01 

Cy 17.8548 1.1178   1.00 -0.11 0.10 -0.09 0.00 0.91 

K1 0.23235 0.0019    1.00 -0.99 0.97 -0.04 -0.11 

K2 -0.84326 0.0077     1.00 -0.99 0.05 0.10 

K3 0.93077 0.0105      1.00 -0.05 -0.10 

P1 -0.00016 4.86E-05       1.00 0.00 

P2 -0.00028 5.09E-05        1.00 

 

In addition to the parameter values, the correlation matrices were also 
analyzed to assess the interdependence between estimated coefficients. As noted 
by Remondino et al. (2006), strong correlations among the radial distortion 
coefficients (K1–K3) are inherent to the structure of the distortion model and 
therefore expected. Likewise, tangential distortion coefficients (P1, P2) often 
exhibit coupling with the principal point offsets (Cx, Cy), particularly in systems 
with shorter focal lengths or limited convergence among image axes. Nevertheless, 
these correlations are generally deemed acceptable and do not compromise the 
overall reliability of the camera calibration. 

The dimensions of the scale elements (SBs and CBs) were measured using a 
Starrett EC799A-8 digital caliper. This device provides a measurement accuracy of 
±0.02 mm for lengths up to 10 cm and ±0.03 mm for greater dimensions (Starrett 
Company, 2024). These precise measurements, combined with the photographic 
capture process, played a vital role in determining the quality of the resulting 3D 
models. 
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To minimize potential errors, each acrylic ruler was measured five times. The 
processed data, including the mean lengths and standard deviations of the scale 
elements, are presented in Figure 3. 

Figure 3 – Mean values and Standard Deviations of the scale elements 

 
Source: Author (2024). 

POINT CLOUD FILTERING 

As previously stated, point cloud filtering is a critical step in the 3D modeling 
process, particularly for datasets generated through SfM and digital 
photogrammetry. While these techniques produce dense, information-rich point 
clouds, they often contain uncertainties caused by the capture conditions, 
equipment calibration inaccuracies, or algorithmic limitations. The filtering process 
aims to enhance positional accuracy and ensure that the point cloud faithfully 
represents the reconstructed object or scene.  

This study employed the methodology established by the United States 
Geological Survey (USGS) (Over et al., 2021) for point cloud filtering. The filtering 
process was conducted using Agisoft Metashape, with parameter values selected 
based on prior experimental validation and USGS guidelines. Quality metrics, 
including Reconstruction Uncertainty, Projection Accuracy, and Reprojection 
Error, were applied to refine the point clouds, enhancing the precision of the 
resulting 3D models.  

Reconstruction Uncertainty: This metric can be interpreted as the ratio 
between the largest and smallest semiaxes of the error ellipse created during the 
triangulation of 3D point coordinates from multiple images. A high ratio suggests 
a high uncertainty, typically along the Z-axis (depth), and these points may 
introduce local noise without contributing meaningful geometric information (Di 
Filippo et al., 2022). For this study, points with a reconstruction uncertainty ratio 
above a threshold of 10 were removed. This threshold is considered effective in 
eliminating noisy points without changing the overall model accuracy.  

Projection Accuracy: This metric reflects how accurately a 3D point is in the 
images used for its reconstruction. It is calculated as the ratio of the sum of the 
image scales (resolutions) in which the point is visible to the total number of 
images where the point appears (Stark et al., 2022). Although USGS method (Over 
et al., 2021) suggest a threshold value of 2, our previous tests showed that this 
value led to excessive point removal, which negatively impacted subsequent 
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processing stages. Therefore, a threshold of 3 was adopted in this study, which 
offered a better balance between accuracy and point cloud density. 

Reprojection Error: This metric measures the discrepancy between a point's 
estimated position in 3D space and its projected location on the original images. It 
serves as an indicator of both model accuracy and camera alignment. In line with 
commonly accepted standards, including those followed in multiple studies using 
Agisoft Metashape, a maximum threshold of 0.3 pixels was adopted. Values 
beyond this may indicate alignment errors or inconsistencies in the reconstruction, 
but additional optimization below this threshold typically does not yield 
perceptible improvements in model quality (Barba et al., 2019). 

When applied collectively, these filtering processes, as demonstrated by 
Capolupo (2021) and Over et al. (2021), ensure that the point cloud is optimized 
for 3D modeling, achieving greater reliability and precision. 

The parameter thresholds adopted in this study are the result of prior 
experimental assessments and are consistent with the quality of the photographic 
data acquired. Overall, these values are expected to be appropriate for 
applications with comparable goals, especially when employing conventional 
imaging equipment of good quality. 

COORDINATE TRANSFORMATION 

Due to the absence of a referenced coordinate system, stemming from the 
challenges of establishing the same scale bar precision, each 3D model was initially 
referenced to the coordinate system of the capturing device. To enable 
comparison among the 3D products generated, a transformation of coordinates 
into a common reference system was necessary. 

To facilitate this transformation, 46 auto-detectable targets, designated as 
Control Points (CPs), were distributed around the ROI, as represented by dark 
green squares in Figure 4. Additionally, 18 Verify Points (VPs), depicted as light 
green squares within the ROI, were used to evaluate model quality and accuracy 
after the transformation. 

Figure 4 – Arrangement of automatic detection targets for coordinate transformation 

 
Source: Author (2024). 

The coordinates of the CPs and VPs, initially in distinct frames, were 
transformed into a common reference system using a Python-based affine 
transformation routine combined with the Least Squares method. This approach 
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allowed minimizing errors and ensuring compatibility of coordinates across 
different models.  

The affine transformation preserves proportions and parallelism, while the 
Least Squares method optimizes accuracy by minimizing discrepancies (Andrei, 
2006). This methodology supports precise comparative analysis of the 3D models 
by effectively aligning coordinates between captures. 

Experimental Models for Coordinate Transformation  

To determine the optimal number and arrangement of CPs for the coordinate 
transformation, four experimental configurations were tested, as summarized in 
Table 3. The CPs were independently selected from the available targets to ensure 
unbiased evaluation and mitigate overfitting in the transformation process. The 
Verify Points (VPs), totaling 18 in all configurations, were exclusively positioned 
within the central region of interest of the imaged object, enabling consistent and 
rigorous validation of transformation accuracy.  

Table 3 – Arrangement of the layout and quantity of Control Points for the Coordinate 
Transformation process 

ID Model Qty. Control Points Qty. Verify Points 

AT Alternating Targets 23 18 
IT Internal Targets 25 18 

AIT Alternating Internal Targets 11 18 
ECT Edges and Central Targets 6 18 

 

The first configuration, referred to as Alternating Targets (AT), used 23 CPs 
distributed alternately across all available targets. The second, named Internal 
Targets (IT), relied on 25 CPs positioned around the region of interest. In the third 
configuration, Alternating Internal Targets (AIT), 11 CPs were alternated around 
the region of interest to create a more restrictive setup. Finally, the Edges and 
Central Targets (ECT) configuration employed six CPs strategically placed along the 
edges and at the center of the horizontal boundaries of the region of interest.  

Each configuration underwent testing to assess positional quality using affine 
transformations, emphasizing precision and alignment fidelity. These experiments 
provided insights into the performance of different setups and informed the 
selection of the most robust approach to ensure repeatable and high-quality 
results in 3D modeling. 

AVAILABILITY OF DATA AND COMPUTATIONAL RESOURCES 

All image datasets captured by the different devices, along with measurement 
values and the computational codes used to process the reference elements in this 
study, are available in the repository Zenodo (10.5281/zenodo.14862180). 
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RESULTS AND DISCUSSION 

POINT CLOUD FILTERING 

The alignment and preparation of sparse point clouds utilized image sets with 
an approximate overlap of 80% to ensure robust feature matching across the 
dataset. Camera and smartphone calibration were conducted using a pre-
calibration model that incorporated all eight scale bars, which provided consistent 
accuracy. Ambient lighting conditions were maintained constant throughout the 
image capture process to minimize illumination variations and achieve uniform 
photometric quality across the dataset. 

For this study, SfM processing generated raw sparse point clouds of 
approximately 1.45 million tie points for the camera dataset and 1.96 million tie 
points for the smartphone dataset. Considering the physical dimensions of the 
imaged area, this corresponds to an average tie point density of approximately 
86.3 points/cm² for the camera and 116.7 points/cm² for the smartphone. Densely 
distributed tie points contribute to greater geometric redundancy and internal 
consistency in the photogrammetric network, which are essential for achieving 
accurate and robust 3D reconstructions, especially in small-scale, high-resolution 
applications (Luhmann et al., 2023). 

Figure 5 presents the Reprojection Error values, measured in pixels, 
corresponding to each stage of the sparse point cloud filtering process for the 
image sets acquired by both the camera and smartphone. 

Figure 5 – Assessment of the Reprojection Error of Sparse Point Cloud 

 
Source: Author (2024). 

The unfiltered Raw configuration produced SfM-generated point clouds with 
elevated Maximum Reprojection Error (MRE) values—47 pixels for the cloud 
produced with the camera set and 53 pixels for the cloud from the smartphone 
set. These high error values can adversely affect the geometric quality of 3D 
models, especially in low-texture regions, resulting in distortions and inaccuracies 
in surface representation, as discussed in Liao and Wood (2020). The values of Root 
Mean Square of the Reprojection Error (RMS RE) for the unfiltered model were 
approximately 0.9 pixels for the camera-captured dataset and 1.58 pixels for the 
smartphone dataset. While these values are generally considered low, they can 
still impact the geometric accuracy of the final model, especially in regions of high 
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geometric complexity where precise reprojection is crucial for accurate 
reconstruction. 

The initial step of the filtering process, referred to as Step 1, analyzes the 
Reconstruction Uncertainty parameter. Despite the lack of significant variations in 
the MRE and RMS RE values when compared to the raw point clouds for both 
image sets, the filtering based on the Reconstruction Uncertainty parameter was 
crucial for enhancing geometric accuracy in subsequent filtering stages. Following 
this step, the point clouds were reduced to 354,845 points for the image set from 
the camera (21.1 points/cm²) and 456,544 points for the image set from the 
smartphone (27.1 points/cm²). 

The subsequent stage of the filtering process, referred to as Step 2, applies to 
the Projection Accuracy parameter. The observed values for MRE and RMS RE for 
both image sets showed significant reductions compared to the previous step. 
Specifically, the camera-derived image set achieved an MRE of 0.29 pixels and an 
RMS RE of 0.40 pixels, while the smartphone-derived model attained an MRE of 
0.59 pixels and an RMS RE of 0.98 pixels. After this step, the point clouds were 
reduced to 229,330 points for the camera image set (13.7 points/cm²) and 285,881 
points for the smartphone image set (17.0 points/cm²). 

The final stage of the filtering process, Step 3, applies the Reprojection Error 
parameter. The observed values showed a slight improvement over the previous 
step for the point cloud derived from the camera image set, achieving an MRE of 
0.13 pixels and an RMS RE of 0.30 pixels. For the point cloud produced from the 
smartphone image set, the values demonstrated a more substantial improvement 
over the previous step, with an MRE of 0.13 pixels and an RMS RE of 0.36 pixels. 

After the filtering process, the point cloud derived from the camera image set 
contained 146,244 points (8.7 points/cm²), retaining approximately 10% of the 
initial points detected, indicating high filtering selectivity while preserving critical 
structure. In contrast, the point cloud generated from the smartphone image set 
was reduced to 69,020 points (4.1 points/cm²), or about 3.5% of the original 
detections, highlighting an even more substantial filtration due to differences in 
initial data quality and sensor precision. The results demonstrate that the camera 
produced a significantly higher density of high-quality points post-filtering 
compared to the smartphone, reflecting its superior image consistency and sensor 
performance. 

Figure 6 illustrates histograms of the Confidence parameter values associated 
with the dense point cloud derived from the camera image set, before and after 
the filtering process, respectively.  

The first histogram (Figure 6a) highlights a large concentration of points with 
low confidence values. In contrast, the second histogram (Figure 6b) shows a 
redistribution of values, with a pronounced shift toward higher confidence levels—
an outcome of the filtering process that effectively removed low-quality 
observations. It is worth noting that the y-axes of both histograms are not 
standardized: Figure 5a reaches up to 1.25 × 10⁶ points, whereas Figure 5b peaks 
at approximately 300,000 points. This difference emphasizes not only the 
improved confidence distribution but also the reduction in point count resulting 
from the selective filtering applied. 
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Figure 6 – Point Confidence histogram, (a) before filtering process, (b) after filtering 

 
(a) 

 
(b) 

Source: Author (2024). 

These results suggest that, while both image sets benefited from the filtering 
process, the camera set presented a higher density of points, possibly due to 
superior initial point quality and lower image noise levels. This substantial decrease 
in point density across both models reflects a careful elimination of redundant and 
low-accuracy points, contributing to more precise and reliable 3D model 
reconstructions, as presented in Figure 7. 
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Figure 7 – Assessment of the Quality of Point Filtering 

 
Source: Author (2024). 

For the 3D model derived from the camera image set (Cam), average Root 
Mean Square Error (RMSE) values improved from 0.41 mm in the unfiltered (Raw) 
configuration to 0.09 mm after filtering. The reconstruction from the smartphone 
image set (Smart) exhibited a less pronounced improvement, with RMSE 
decreasing from 0.49 mm and 0.42 mm for SBs and CBs in the Raw set to 0.19 mm 
and 0.16 mm, respectively, at the end of the filtering process. 

The significant reduction in RMSE highlights how filtering can substantially 
enhance the accuracy and quality of 3D reconstructions, mitigating distortions and 
inaccuracies inherent in raw data sets, as supported by prior studies (e.g., 
Capolupo et al., 2020; Stark et al., 2022), especially when using consumer-grade 
imaging equipment.  

ASSESSMENT OF THE CONSISTENCY OF 3D MODELING PRODUCTS 

Based on the results obtained from the filtering process, as previously 
discussed, the model generated from the camera image set was selected as the 
reference model for subsequent experiments. This decision was guided by the 
higher geometric precision and lower error values observed in the camera-based 
model compared to those generated from the smartphone image set, highlighting 
the camera’s advantage in producing accurate spatial data for 3D modeling. 

To assess the consistency of 3D models produced using consumer-grade 
imaging equipment, an additional image set was acquired with the camera 
positioned at a 45° tilt relative to the ground plane. This configuration aims to test 
the model’s robustness under varying capture angles, which can introduce 
different challenges in alignment and scale accuracy. 

Figure 8 presents the RMSE for SBs and CBs in this new 3D reconstruction, 
called Cam2, along with the previously discussed values for the Cam and Phone 
image sets. 
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Figure 8 – Assessment of the 3D Quality of Modeling of Set of Images 

 
Source: Author (2024). 

The RMSE obtained from the camera image sets, Cam and Cam2, showed a 
slight advantage over the values from the Phone set. Both Cam and Cam2 
configurations demonstrated significant similarity to each other, with a marginally 
better performance observed in the Cam configuration. 

After the complete processing of all image sets using the SfM technique, and 
given the absence of referenced control points, each model was initially referenced 
to an arbitrary coordinate system, defined according to the camera's internal 
geometry.  

To enable a direct comparison between the generated models, it was 
necessary to align these systems to a common reference frame. Therefore, the 
coordinate system of the Cam model was chosen as the reference, and the 
remaining models were transformed into this system, allowing for consistent and 
accurate comparative analyses.  

Table 4 the coordinate transformation residuals, categorized by axis (X, Y, Z) 
and control point distribution model (AT, IT, AIT, ECT), for both the Cam2 and 
Phone datasets relative to the reference coordinate system. 

Table 4 – Residuals of the coordinate transformations for the Cam2 and Phone models 
relative to the Cam model 

Cam2 AT IT AIT ECT  Phone AT IT AIT ECT 

X (mm) 0.25 0.18 0.28 0.32 X (mm) 0.25 0.17 0.33 0.39 
Y (mm) 0.18 0.17 0.25 0.29 Y (mm) 0.22 0.16 0.31 0.37 
Z (mm) 0.10 0.08 0.14 0.19 Z (mm) 0.12 0.09 0.18 0.26 

 

The residuals demonstrate that the AT and IT configurations consistently 
yielded the lowest deviations. In contrast, the AIT and ECT configurations 
exhibited higher residuals, suggesting greater sensitivity to control point 
distribution. 

Figure 9 presents the RMSE values for Control Points (CP) and Verify Points 
(VP)- also known Check Points, as well as for CBs. These values are presented for 
each configuration of distribution and quantity of reference points used in the 
transformation of the Cam2 model to the Cam system. 
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Figure 9 – Coordinate Transformation Assessment - Cam2 to Cam  

 
Source: Author (2024). 

The results indicate that the "AT" (Aligned Targets) and "IT" (Internal Targets) 
configurations preserved the RMSE for the CBs, matching the precision observed 
in the original Cam2 model before coordinate transformation, while other 
configurations showed a slight increase in RMSE, indicating a minor degradation in 
accuracy. For the CP and VP measurements, the "Internal Targets" configuration 
achieved the best results, with RMSE of 0.30 mm and 0.26 mm, respectively, 
underscoring its effectiveness in achieving accurate alignment. 

Figure 10 displays the quality parameter RMSE for the coordinate 
transformation from Phone to the Cam model for each configuration and number 
of reference points. 

Figure 10 – Coordinate Transformation Assessment - Phone to Cam 

 
Source: Author (2024). 

In alignment with the results from the Cam2 transformation, the "AT" and "IT" 
configurations maintained RMSE for the CBs consistent with the untransformed 
results. In this case, the "IT" configuration again yielded the most accurate CP and 
VP values, with RMSEs of 0.38 mm and 0.25 mm, respectively. 

These results highlight the reliability of the "IT" configuration for maintaining 
model accuracy during coordinate transformation, particularly when transforming 
between image sets captured with different consumer-grade imaging equipment. 

After the coordinate transformation, to reference all models from common 
control points, a comparative analysis was performed between the densified point 
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cloud of the reference set and the additional clouds generated using the SfM 
technique. This analysis, conducted in CloudCompare software, utilized the M3C2 
method to evaluate geometric discrepancies between models, highlighting any 
structural variations and precision differences among the reconstructions, as 
discussed in Liao and Wood (2020). 

Figure 11 displays the comparison between the 3D point clouds generated 
from the Cam and Cam2 image sets, emphasizing the geometric differences based 
on distances calculated through the M3C2 technique. 

Figure 11 – Comparation between the 3D Dense Clouds – Cam and Cam2 

 
Source: Author (2024). 

The Cam and Cam2 point clouds showed minimal variation between them, 
despite the altered camera angles used to capture the Cam2 set. This consistency 
suggests a high degree of robustness and quality in the camera-generated images, 
as similarly noted in previous assessments (Moraes; Silva, 2024). The most 
noticeable variations occurred at the model edges; however, within the primary 
area of interest — specifically, the internal region of the wooden board — 
discrepancies remained limited to around ±0.15 mm. These results reflect 
excellent precision and consistency in the 3D reconstruction of the central area, 
which is crucial for applications requiring high geometric fidelity, confirming that 
the image capture and filtering methods effectively preserved essential structural 
details. 

Figure 12, in turn, presents the comparison between the 3D point clouds 
generated from the Cam and Phone image sets, with distances calculated via the 
M3C2 method. 
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Figure 12 – Comparation between the 3D Dense Clouds – Cam and Phone 

 
Source: Author (2024). 

Unlike the previous comparison, this analysis of the Cam and Phone sets 
revealed substantial differences throughout the area studied. This can be 
attributed to the lower image resolution of the smartphone, which lacks the detail 
of the camera-generated images. The impacts of these discrepancies were most 
apparent in regions with minimal surface texture variation, such as the plastic-
coated surfaces of the scale elements and the cubes covered with silver tape, 
where noisy, low-precision zones led to distortions affecting surrounding model 
areas. 

These outcomes highlight the critical role of capture equipment in 
determining the final accuracy of 3D models, particularly in areas with 
homogeneous textures where high-quality imaging is essential to avoid 
introducing noisy regions. Figure 13 illustrates this effect in orthophotos generated 
by the SfM process for the Cam2 and Phone sets, focusing on a common region. 

Figure 13 – Comparation of details levels in Orthophotos Cam2 and Smart 

 
Source: Author (2024). 
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In Figure 13a, derived from the Cam2 set, the edges of elements are clearly 
defined, allowing for precise visualization of detailed features. Conversely, Figure 
13b, corresponding to the orthophoto from the Phone set, shows significant 
blurring in the same region, obscuring details and making it impossible to detect a 
comparable level of detail to that seen in Figure 13a. 

These results indicate that while smartphones and similar consumer devices 
can achieve viable 3D reconstructions with quality in the order of millimeters or 
better, as pointed out in Boboc et al. (2019), specialized equipment, such as 
cameras with interchangeable lenses, remains essential in projects where high-
fidelity outputs are crucial. This need is particularly pronounced in applications 
demanding detailed structural features and precise surface accuracy. 

In conclusion, the choice of imaging equipment plays a decisive role in the 
fidelity of 3D reconstructions. High-quality cameras substantially enhance the 
accuracy and detail in critical areas, helping to mitigate issues such as noise and 
blurring that are more prevalent with lower-resolution devices. However, with the 
rapid advancements in smartphone imaging technology, the current advantage of 
high-end cameras may narrow shortly. Professionals will increasingly need to 
assess the specific demands of each project and the capabilities of available 
equipment to ensure compatible modeling. 

LIMITATIONS OF THE STUDY 

This study assessed the use of consumer-grade imaging equipment for 3D 
modeling in close-range laboratory environments for structural testing, 
highlighting key limitations of the experimental approach.  

Coordinate Transformation: The lack of referenced control points required to 
coordinate conversions using common points across 3D models. This necessitated 
a broader photographic capture area to ensure an accurate representation of both 
the object and its surroundings. However, this approach presented challenges in 
laboratory spaces, where limited room and restricted viewpoints increase time 
demands. 

Smartphone Usage: While modern smartphones have improved imaging 
capabilities, their current reliance on post-processing algorithms for noise 
reduction and detail enhancement negatively impacts 3D modeling accuracy. 
These algorithms had to be disabled, complicating the capture process and 
exposing limitations in brightness control and detail resolution due to smaller 
sensors. Despite these challenges, continued advancements in smartphone 
imaging technology may make them suitable for millimeter-level 3D modeling, 
particularly in contexts that do not demand submillimeter precision. 

CONCLUSIONS 

This study assesses the differences and quality levels achieved in 3D modeling 
using the SfM technique, comparing cameras with interchangeable lenses and 
smartphones as imaging devices. Through this comparative analysis, we sought to 
identify both the limitations and the potential of each device for producing 
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accurate three-dimensional models, focusing on geometric detail, positional 
accuracy, and the capacity for detailed surface representation of the specimen. 

Photographic capture and SfM processing were conducted to generate high-
quality 3D models, achieving precision at the millimeter scale or finer, suitable for 
structural analyses in controlled, short-distance laboratory environments. To 
maintain consistent lighting across the object, auxiliary lighting systems were 
utilized, minimizing light variability that could otherwise compromise capture 
consistency. Additionally, submillimeter-precision scale bars were incorporated to 
ensure accurate model scaling. The wooden test specimen was enhanced with 
artificial texture to improve reference point detection and enhance the SfM 
technique performance in generating a precise model. 

Within this context, cameras with interchangeable lenses outperformed 
smartphones by offering greater control over light exposure and capturing higher-
resolution details. This resulted in 3D models with RMSE around 0.1 mm and 
sharper details across detected elements. While smartphones also produced 
models with RMSE close to 0.2 mm, the level of detail was noticeably noisier and 
less sharp. This limitation may restrict smartphone suitability for reconstructing 
objects that require high levels of detail, especially in analyses that depend on 
precision and visual clarity.  

The lower quality of smartphone images was also evident in surface 
representations, which were noisier and less defined, particularly in areas with 
uniform texture on the object’s surface. Additionally, a subsequent model was 
developed through a new capture process with the camera, achieving quality and 
detail consistent with the initial model. This consistency indicates that the accuracy 
of the SfM technique is reliably repeatable when using cameras with 
interchangeable lenses, strengthening its validity for high-precision modeling. 

Based on the experimental results, several key recommendations are 
proposed to ensure optimal outcomes when applying SfM in high-precision 
applications: (1) Select imaging equipment and configurations that yield a GSD 
compatible with the level of detail required for the intended analysis; (2) Use 
consistent and diffuse lighting conditions to avoid radiometric inconsistencies 
across the object; and (3) Carefully plan the distribution and quantity of control 
points, especially when the object exhibits fine geometric complexity, to avoid 
overfitting and ensure transformation accuracy. 

In conclusion, while smartphones present a convenient and accessible option, 
their limitations in optical control and sensor quality make them less effective than 
cameras with interchangeable lenses for high-precision 3D modeling. 
Nevertheless, smartphones may be appropriate for preliminary surveys or for 
scenarios where submillimeter precision is not critical. Considering the rapid 
technological advancements in smartphone imaging, future studies should 
replicate this work to evaluate new developments in quality and performance 
across different imaging equipment. This continued evaluation will help define 
when smartphones can be reliably employed for specific tasks in structural 
monitoring, geotechnics, or archaeology, ultimately broadening their practical 
utility in these technical fields. 
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Filtragem de nuvem de pontos e 
desempenho de dispositivos em SfM: 
comparando câmeras e smartphones para 
modelagem 3D 

RESUMO 

  A técnica Structure from Motion (SfM) tem sido amplamente empregada na modelagem 3D 
a partir de imagens digitais, destacando-se pela acessibilidade e compatibilidade com 
dispositivos convencionais, como câmeras e smartphones. No entanto, a qualidade dos 
modelos gerados depende diretamente da adequação do conjunto de imagens e de etapas 
de refinamento do processo, como a filtragem da nuvem de pontos, frequentemente 
subestimadas na literatura. Este estudo investiga a eficácia de diferentes dispositivos de 
captura na modelagem 3D por SfM, bem como o impacto da filtragem da nuvem de pontos 
na acurácia dos modelos gerados. Para isso, foram analisadas modelagens obtidas a partir 
de imagens capturadas por câmera e smartphone, com e sem a aplicação de filtragem na 
nuvem de pontos esparsa. Os resultados indicam que a filtragem é essência para a obtenção 
de uma alta qualidade dos modelos gerados por câmeras, resultando em um RMSE de 0,1 
mm e maior detalhamento do objeto. Entretanto, os modelos obtidos com smartphones 
demonstraram potencial competitivo. Esses achados ressaltam a importância de estratégias 
de refinamento na modelagem SfM e contribuem para otimizar seu uso em diferentes 
contextos de captura. 

 

PALAVRAS-CHAVE: Structure from Motion. Reconstruction Uncertainty. Projection 
Accuracy. Reprojection Error. Smartphone. 
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