
JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 21

DOI: ISSN:

Abstract— In this paper Model Based Design (MBD) is used to

simplify the development of three types of visual warning in an

automobile. Along the signals the proposed system provides the

outputs to send encapsulated signals in an automotive network.

The method presented in this paper uses auto code generation to

ease the developers work and give engineers experienced in

embedded programing a very useful option to avoid expenditure

of time often waste in manual programing. The C code generated

automatically can be used in several hardware and the

methodology presented is helpful in a wide broad of applications.

 Index Terms— Model Based Design; Model in the Loop;

Software in the Loop; Warning Lights.

I. INTRODUCTION

he quest for costs and time reduction in new products
development are the goal for every industry. Many
industries are under pressure to reduce their development

times when they produce unique and innovative products [1].
Model Based Design (MBD) is a prominent option to achieve
standardization in system development. Conceptually, in MBD,
the development process is executed in a single platform, which
allows developers to create models of the desired plant and
controller, resulting in a functional and easy to verify system [2-
3].

One of advantages of MBD is the ease of engineers and

designers to find and fix errors early in the system design, at a
stage where time and cost for system modifications are

diminished [4]. Another key advantage of MBD is the use only
one software platform for testing and verification during most
part of the development period. Therefore, using the same
software one can create, test, and find errors in the logic. Ideas
and improvements for the main project can be idealized and
executed in the early stages of MBD. To begin a model, it is
necessary to define the system requirements according to the
controller actuation.

Thus, the present work is directed to the early stages of
MBD, called Model in the Loop (MIL) and Software in the Loop
(SIL), but mainly focusing in the SIL and the auto code
generation, held in a drive process of brake warning lamps ABS,
alert brake, and Stability Control (ESC). Highlighting such
steps, it is possible to prove that by executing the first two loops
of development, one can ensure that most part of the final project
is obtained and most errors can be detected.

To illustrate the ease of development promoted by MBD, the

first two steps (MIL and SIL) can be executed and verified in

the same software. As mentioned before, MIL will be only

mentioned succinctly. The main focus of this work is the SIL

stage with the auto code generation feature.

The present work is divided as follow: Section II explores the

MBD process, Section III shows the application requirements,

Section IV presents the MIL, Section V presents the Test Case

to this application, Section VI shows the Auto Code Generation

process, Section VII shows the Results and the Discussion, and

at least, Section VIII presents the Conclusion.

II. MODEL BASED DESIGN

MBD is a design methodology widely used for automotive
embedded software, where the engineering process gets together
Original Equipment Manufacturer (OEM) and suppliers,
benefiting with information exchange, development workflow,
and toolchain in a standardized way [5].

MBD comprises four validation techniques, which are four
stages of operation, called Model-in-the-Loop (MIL), Software-
in-the-Loop (SIL), Processor-in-the-Loop (PIL), and Hardware-

Model and Software in the Loop with Automatic Code

Generation for Indicator Lights Warnings

José Jair Alves Mendes Junior, João Henrique Zander Neme, Max Mauro Dias Santos,

Sergio Luiz Stevan Jr.

__

T

José Jair Alves Mendes Junior, Federal Technological University of Paraná
(UTFPR), Ponta Grossa, Paraná, Brasil, e-mail: jjjunior@utfpr.edu.br;

João Henrique Zander Neme, Federal Technological University of Paraná

(UTFPR), Ponta Grossa, Paraná, Brasil, e-mail: neme@outlook.com;
Max Mauro Dias Santos, Federal Technological University of Paraná

(UTFPR), Ponta Grossa, Paraná, Brasil, e-mail: maxsantos@utfpr.edu.br;

Sergio Luiz Stevan Jr, Federal Technological University of Paraná (UTFPR),
Ponta Grossa, Paraná, Brasil, e-mail: sstevan@utfpr.edu.br.

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 22

DOI: ISSN:

in-the-Loop (HIL), as shown in Figure 1 [6]. On the first steps
(MIL, SIL, and PIL) the importance of MBD is emphasized,
showing the effectively and efficiently of the methodology.
Before listing these characteristics, it is necessary to understand
what these steps are.

These stages of development can greatly simplify the work
of creating control software for mechatronic systems.
Commonly the control software is called controller and the
mechatronic system to be controlled is called plant.

In model based software development, the design gradually
develops into an executable artifact with different layers of
graphical abstractions called models [7]. These models can be
used to automatically generate executable codes, suitable for the
target platform, using code generators [8].

MIL is the central reference for the next stages, since at this
stage the operating logic is defined and also the control strategy
and the definition of all input and output variables is executed.
From MIL, when it comes to verification, all subsequent stages
serve to verify the logic developed in this first stage. At this step
it can be noted if the system is implementable

Within the MIL phase and in MATLAB/Simulink®
environment, is also developed the functional model of the
desired system. This way one can make a very acceptable
simulation of the system in operation. Diagrams and state
diagrams in Simulink®/Stateflow® are the starting points for
function prototyping. They represent the controller and its
environment graphically and can be simulated offline for a first
validation [9].

As the development of systems at this stage is very fast,
changes and system’s test can be executed faster compared to
the other steps in traditional approaches. Generally, the MIL
development platform is the same as the SIL and PIL, which
allows greater flexibility in the designed model.

The great ease of MIL comes from the use of programming
in graphical form. With this feature, the focus is not based on
structured textual codes, but graphics engines, which help in
viewing and understanding. This characteristic is important
because the model will be design not only by one individual
developer, but also by a range of professionals who can reduce
the understanding time compared to textual structures.

Thus, MIL breaks down barriers created by traditional
development, as all professionals involved in the development
work on the same platform. The desired requirements for the
system are observed by the same group that will develop the first
functional design of the project and on the same software. After
the development of the operating logic a test case is created to
be inserted as system input signals. If on the simulation any
requirement were not met, the same group has the ease to find
the problem.

Fig. 1 MBD phases. The highlines phases are the ones executed in this work.

III. REQUIREMENTS

Each system (brake warning lamps ABS, brake warning, and

stability control) has its peculiarities. Figure 2 shows the

relationship of the system’s inputs and outputs. Entries are

related to state variables and equipment, functions of diagnostic

tool - marked "Diag" - and fault detection in the system - marked

"Detec".

The diagnostic functions represent the use of specific

equipment, which can be connected to the automotive

communication network for diagnosis. As it is inserted, it must

send targeted commands to the devices, sensors, and actuators,

and they should respond, triggering, or not and/or sending

signals. Its usefulness lies in the ease of finding faults in

devices, since it can check systems one by one. Therefore, it

was considered for each system, in addition to the general input

that represents the connection of the diagnostic tool, an input

variable to simulate the trigger action of the lamps and actuators

of each system. Besides the state of the lamps, corresponding

signals are also sent that can be encapsulated in an automotive

network (for example, CAN and FlexRay Protocol)

representing the action that is occurring.

Fig. 2 List of inputs and outputs: A) ABS Indicator Lamp, B) Brake Warning

Indicator Lamp, and C) ESC Indicator Lamp.

The activities described in Table I show the operation
prerequisites of the entire system divided by its general
requirements and each step. The requirements also take into
account the priority level that every action must have. Therefore
subsequent tasks described are less priority than those described
first. The general exception is in the insertion of a diagnostic
tool, as it can happen at any time, and action should stop any
other action that is happening in the software and direct the focus
to detect faults and errors.

IV. MODEL DESIGN

The developed models based on the requirements on Table I
are shown in Figure 3 (ABS Indicator Lamp), Figure 4 (Brake
Warning Lamp), and Figure 5 (ESC Indicator Lamp). All the
models were built on MATLAB/Simulink® platform with
Stateflow® diagrams. Each model is a state machine which
would determine the output according the established

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 23

DOI: ISSN:

requirements. This models were developed allocating Charts
(blocks on which the logic is written) with the highest priority
outwardly while the lower priority inwardly. The three Charts
were programed with “OR” operation, avoiding to make
unnecessary parallelism that could consume memory resources
and a greater allocation of data to generate the final code.

These Charts are made by states (rectangles), in which are
insert the actions to be performed. Two actions were used: entry,
which do one action when the state is set; and during, which do
the actions while the state is set. The lines in blue represents the
transitions and between the states and its conditions. In each
state, there is an initial condition responsible to inform the first
state to be performed.

The first two requirements are fulfill with the Chart Tool in
all models (Figure 3, 4, and 5) with the “Tool” Chart. They
priories the diagnostic tool and monitoring if there are any action
to perform. When this device is not connected, the models acting
in theirs particularities.

In the Figure 3, when the device is not connect, the
requirements from 03 to 07 are fulfill inside the following charts:
Rank 2, Rank 3, Rank 4, and Rank 5. Each of these charts are
set to be active when a malfunction is detected (Malfunction),
the solenoid relay is turned off (Solenoid_Fault), or Antilock
Brake System is active (Atilock_Brake).

On the other hand, in the Figure 4, the requirements from 08
to 12 are satisfied. The Charts (from Rank 2 to Rank 5) act when
the diagnostic tool is not connect. The Charts are active when
there are a malfunction (Malfunciton_EBD), the solenoid has a
failure (turned off), or the level of brake fluid is low
(Brake_Fluid).

The Figure 5 presents the model developed to perform the
requirements from 13 to 18. There are more states in this model
due to their requisites, with states from Rank 2 to Rank 6. The
transitions are given to the state from system (SyError),
malfunction on stability and traction systems (Malfunction_ESC
and Malfunction_TCS), problems on solenoid relay

TABLE I SYSTEM REQUIREMENTS

Number Requirement

 General Requirements

REQ-01 The diagnostic tool has higher priority than any other action

REQ-02 If there is no action to perform, all outputs must remain unchanged.

 ABS Warning Lamp Requirements

REQ-03 When connected with the diagnostic tool, one can turn the warning lamp on and off and send “1” or “0” to signal B.

REQ-04 If a malfunction is diagnosed, the lamp must be on and B must be “1”.

REQ-05 If it is detected that the solenoid relay is turned off, the lamp must be on and B must be “1”.

REQ-06 If the ABS system is active, A must be “1”.

REQ-07 If there is no action to perform, the lamp must be off; also A and B must be “0”.

 Brake Fluid Warning Light

REQ-08 When connected with the diagnostic tool, one can turn the indicator lamp on and off and send “1” or “0” to signal D and I.

REQ-09 If a malfunction is diagnosed, the lamp must be on, also D and I must be “1”.

REQ-10 If it is detected that the solenoid relay is turned off, the lamp must be on, also D and I must be “1”.

REQ-11 If the brake fluid level is low, the lamp must be on and the value 1 sent to C, D and I.

REQ-12 If there is no action to perform, the lamp must be off; also C, D and I must be “0”.

 ESC Indicator Light

REQ-13 When connected with the diagnostic tool, one can turn the warning lamp on and off and send “1” or “0” to signal F and G

REQ-14 If an error is detected in the system configuration, the ESC lamp must be on; also F and G must be “2”.

REQ-15 If a malfunction is diagnosed, the ESC lamp must be on; also F and G must be “2”.

REQ-16.1 If the TCS is on, the ESC lamp must blink and G must be “1”.

REQ-16.2 If the ESC, the ESC lamp must blink and F must be “1”.

REQ-17.1
If 4 wheel drive high is on the ESC lamp must be off, ESC OFF will be on only if CUT-SW Long Off is active, E will

receive “1” if CUT-SW Long Off is not active (0 otherwise) and H receives “1” only if CUT-SW is OFF (0 otherwise).

REQ-17.2
If 4 wheel drive low is on, ESC lamp must be off, ESC OFF will be on; E receives “0”, and H receives “0” only if CUT-

SW Long Off (1 otherwise).

REQ-18 If there is no action to perform, the lamp must be off; also F and G must be “0”; also E and H must be “1”.

Fig. 3 Developed controller for the desired system on Stateflow® block diagram, for ABS Indicator Lamp.

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 24

DOI: ISSN:

(Solenoid_Fault), and the conditions among the Stability,
Traction, CUT-SW, WDH, and WDL.

V. TEST CASE

Software test selects the input data to control the test

program and observe the outcome after test execution.

Developers analyze the final result and can identify possible

bugs and improvements. In the software life time, software test

is important phrase in the all life and takes up 30-50% cost [10].

A test case suit must be developed in a way that all conditions

and logics are placed in test.

Figure 6 shows the values inserted on the system. For the

simulation, Simulink® Signal Builders were used to create

signs. These were generated in a time interval of 15 seconds.

Once the test case is generated, the system is then tested by

imputing all created signals in the model.

The verification phase happens when the developers check

if all outputs are working as expected. Subsequently, all

system’s outputs of are presented in Figure 7. After checking

all outputs it was proved that the logic contained in the MIL

model was corresponding with the requirements.

VI. AUTO-CODE GENERATION

Implementation of controller in real-time is a time
consuming task in any industry controller design process. Due
to increasing demands from the industry, the use of automatic
code generation tools, which helps to reduce project completion
time, has gained good acceptance [11].

MATLAB® tools for auto-code generation are not novelty in

system development. As a matter of a fact there are mature tools

that simplify the code generation and saves time and resources.

Simulink Coder® generates and executes C and C++ code from

Simulink® diagrams, Stateflow® charts, and MATLAB®

functions. The generated source code can be used for real-time

and nonreal-time applications. Using the model design at MIL it

is possible to generate a generic code that can be compiled and

used in a specific target.

It is possible to test the generated code using Simulink itself.

This feature is eased by Simulink using a block called S-

function. An S-function is a computer language description of a

Simulink block written in MATLAB®, C, C++, or FORTRAN.

Using the same test case as inputs and Simulink® scopes in the

Fig. 4 Developed controller for the desired system on Stateflow® block diagram for Brake Warning Light.

Fig. 5 Developed controller for the desired system on Stateflow® block diagram for ESC Indicator Lamp

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 25

DOI: ISSN:

Fig. 6 Designed Test Case for each input. The cases were implemented to map all the possibilities on the controller.

Fig. 7. System outputs after testcase.

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 26

DOI: ISSN:

outputs, it is possible to check if the auto generated code

behaves exactly like the model design in MIL.

In this work, an S-function was implemented. Figure 8

shows the S-function that contains the generic C-code matching

the design model. The middle block is the S-function while the

one in the left is the test case block.

VII. RESULTS AND DISCUSSION

It is not sufficient to simply generate code without ensuring

it performs exactly as the original algorithm. Table 2 helps to

better understand the verification process. As it is possible to

see, all requirements were fulfilled.

The numbers inside the tables refer to the requirements

described in Table 1. The encapsulated messages trigged by the

events are named A1, B1, C, D, I, E, F1, F2, G1, G2 and H. The

column “Req” indicates the requirements for the project, while

the “Ver” column indicates whether this requirement was

verified. For an example, requirement 13 says that if the

Diagnostic Tool is connected and the operator sends a signal to

turn the ESC Indicator Light on, the Indicator Light must be

turned on, and messages F and G must be sent. As can be noted

in Table 2, the cells for ESC IL and messages F and G are

marked in the “Req” column, indicating that this is the actions

required. In addition, the cells on the “Ver” column ate marked

because by scrutinizing the signals it was noted that the

requirements were verified.

Once the code is build and tested it is possible to compile it

for a chosen microcontroller. Simulink allows the developer to

Fig. 8. S-function containing the generated

TABLE II SYSTEM VERIFICATION

 ABS WL A1 B1 Brake WL C D I

 Req Ver Req Ver Req Ver Req Ver Req Ver Req Ver Req Ver

Device Connected 3 3 3 3 8 8 8 8 8 8

ABS WL 3 3 6 6 3 3

Brake WL 8 8 8 8 8 8

ABS ON

Brake Fluid Alert 11 11 11 11 11 11 11 11

Malfunction ABS 4 4 4 4

Malfunction EBD 9 9 9 9 9 9

Solenoid ABS 5 5 5 5

Solenoid EBD 10 10 10 10 10 10

 ESC IL ESC Off Flash E F1 F2 G1 G2 H

 Req Ver Req Ver Req Ver Req Ver Req Ver Req Ver Req Ver Req Ver Req Ver

Device Connected 13 13 13 13 13 13 13 13 13 13

ESC IL 13 13 13 13 13 13 13 13 13 13

TCS ON 16.1 16.1 16.1 16.1 16.1 16.1

ESC ON 16.2 16.2 16.2 16.2 16.2 16.2

Malfunction ESC 15 15 15 15 15 15 15 15 15 15

Malfunction TCS 15 15 15 15 15 15 15 15 15 15

ECS Config Error 14 14 14 14 14 14 14 14 14 14

Solenoid ESC

Wheel Drive High 17.1 17.1 17.1 17.1 17.1 17.1

Wheel Drive Low 17.2 17.2 17.2 17.2

CUT SW 17.2 17.2 17.1 17.1 17.1,2 17.1,2

CUT SW Short 17.2 17.2 17.1 17.1 17.1,2 17.1,2

CUT SW Long 17.1,2 17.1,2

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 27

DOI: ISSN:

automatically compile and load a generic code in a specific

target. MathWorks offers a wide range of support packages for

different manufacturers. This step would be called Processor-

in-the Loop and is not part of the scope of this paper.

VIII. CONCLUSION

The system achieved the proper behavior for meeting the
requirements on the MIL phase and the SIL phase confirmed
what was expected. It is clear that MBS is a powerful tool for
development of complex systems.

Since early stages, it can be seen that most modifications,
improvements, and changes can be executed, reducing
significantly the time and resources required in the traditional
development approach. When working with other systems or
methodologies, mistakes, and bugs are only discovered in late
stages of development, and the work need to be restarted from
scratch. Among these advantages comes the flexibility, because
at any time the model can be changed and improved, and the
modifications will be easily applied for subsequent phases.

Within the presented proposal, MBD presented itself as a

useful tool, explaining why it is used in the automotive and

aerospace industries. However, its use can be extended to all

development models, as it is a methodological tool for the

development of different systems. The auto code generation

feature was very helpful, once manual coding is very time

consuming. Generation code with Simulink® didn’t took more

than a few seconds, discarding any need to prove its advantages

against the traditional approach. Using the same proposal for

future work, we intend to cover the PIL phase, embedding on a

microcontroller and proving that the answer corresponds to the

one obtained in previous steps.

REFERENCES

[1] T. Kelemenová, M. Kelemen, L. Miková, V. Maxim, E. Prada, T. Lipták,
and F. Menda. “Model Based Design and HIL Simulation”. American
Journal of Mechanical Engineering, 2013, Vol. 1, No 7, 276-281.

[2] T. Lennon. “Model-based design for mechatronics systems”. 2007. The
Mathworks Inc. Available in: <http://machinedesign.com/archive/model-
based-design-mechatronics-systems> Acces in Jul 17 2015.

[3] B. Kirby, H. Kang. “Model Based Design for Power Systems Protection
Relays, Using Matlab & Simulink”. International Conference on
Developments in Power System Protection, 2008, 654-657.

[4] C. Fantuzzi. “Chapter 02 Modeling”. Modena: Università Degli Studi di
Modena e Reggio Emilia, 2014.

[5] M. M. D. Santos, J. H. Neme, F. R. Franco, S. L. Stevan Jr., W. Torres,
A. B. Lugli, A. A. M. Laganá, J. F. Justo. “Model-Based Design of
Exterior Lighting Control Function for Automobile:MIL, SIL and RCP”.
International Journal of Innovative Computing, Information and Control
Volume 11, Number 5, October 2015.

[6] E. Bringmann, A. Krämer. “Model-based Testing of Automotive
Systems”. International Conference in Software Testing, Verification and
Validation, 2008, 485-493.

[7] D. Kamma, S. Kumar G. “Effect of Model Based Software Development
on Productivity of Enhancement Tasks - An Industrial Study”. Software
Engineering Conference (APSEC). 2014 21st Asia-Pacific. Jeju, 1-4 Dec.
2014.

[8] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Integrated
development of embedded software,” in proceedings of IEEE, vol. 91,

Jan. 2003, pp. 145–164

[9] M. M. D. Santos, J. H. Neme, F. R. Franco, S. L. Stevan Jr., W. Torres,
A. B. Lugli, A. A. M. Laganá, J. F. Justo. “Rapid Control Prototyping for
Automotive Sotware in Power Windows Systems”. International Journal
of Innovative Computing, Information and Control Volume 11, Number
4, August 2015.

[10] Z. Liu, N. Gu, G. Yang. “An Automate Test Case Generation Approach:
Using Match Technique”. Computer and Information Technology, 2005.
CIT 2005. 21-23 Sept. 2005. 922 – 926

[11] F.C. Teng. “Real-time control using Matlab Simulink”. IEEE
International Conference, 4 (2000), pp. 2697–270

Received: 21 February 2016

Accepted: 28 July 2017

Published: 15 August 2017

© 2017 by the author. Submitted for possible

open access publication under the terms and

conditions of the Creative Commons

Attribution (CC-BY) license

(http://creativecommons.org/licenses/by/4.0/).

José Jair Alves Mendes Junior is graduated in

Automation Industrial Technology at Federal

Technological University of Paraná (UTFPR-

Ponta Grossa), Master in Electrical

Engineering at UTFPR- Ponta Grossa, Doctoral

Student in Electrical Engineering and Industrial

Informatics at UTFPR-Curitiba, currently is

professor on Electronic Department at UTFPR-Ponta Grossa.

João Henrique Zander Neme is graduated in

Electronic Engineering at Federal

Technological University of Paraná (UTFPR-

Ponta Grossa), Master in Electrical

Engineering at UTFPR- Ponta Grossa.

Max Mauro Dias Santos is graduated in Electric

Engineering at Catholic Institute of Minas Gerais,

Master in Electrical Engineering at Federal

University of Santa Catarina (UFSC), Doctor in

Production Engineering at UFSC, currently is

professor on Graduate Program in Electric

Engineering at UTFPR-Ponta Grossa.

Sergio Luiz Stevan Jr is graduated in Electric

Engineering at Federal University of Paraná

(UFPR), Master in Electrical Engineering and

Industrial Informatics at UTFPR-Curitiba,

Doctor in Electronic Engineering at University

of Aveiro, currently is professor on Graduate

Program in Electric Engineering at UTFPR-

Ponta Grossa and in Graduate Program in Applied Computer at

State University of Ponta Grossa (UEPG).

