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Abstract—This paper presents the development of a 

computational intelligence method based on Regularized Logistic 

Regression to classify 17 distinct upper-limb movements through 

surface electromyography (sEMG) signal processing. The choose 

of the tuning parameters of the regularization and the generation 

of the different classification methods are presented. For the 

different models were used variations involving 12 sEMG 

channels and the Root Mean Square (RMS), Variance and 

Medium Frequency features with which we proposed to achieve a 

most proper combination of parameters to perform the 

movements classification. The tests involved 50 subjects, 

including 10 amputees, using the NinaPro database and also a 

database currently on development by the authors. The global 

mean accuracy rate considering all the subjects and the channel 

and features variations was 70,2% prior the definition of the best 

case scenario. Once defined the most proper features 

combination, the accuracy rate reached 87,1%, raising the rates 

of all movements accuracies performed for all databases.  

 
Index Terms— sEMG, upper-limb, logistic regression, feature 

selection, channel variation, accuracy rate 

 

I. INTRODUCTION 

HE electromyography (EMG) consists on capture the 

electrical activity present in human muscle during a body 

movement. Although the EMG signal acquisition can be 

performed through invasive or non-invasive electrodes and 

despite the signal to noise ratio of non-invasive electrodes be 

considerably higher [1], its use its way more frequent than 

invasive electrodes, once non-invasive electrodes do not cause 

pain to patients and do not required a specific training for their 

 
 

placement. For the invasive EMG, electrode needles are 

frequently used for direct recording of electrical signals from 

nerves and muscle fibers [2].  

The technique of acquire EMG signals through surface 

electrodes is called surface electromyography (sEMG). The 

early days of use of the myoelectric signals as control 

mechanism date from the 40’s [2], ever since, there are 

researches focused on establish an assistive technology 

capable to help people with disabilities [3 - 8]. A constant 

focus has been to enhance the pattern recognition methods 

necessary to properly identify the user movements [2, 9]. The 

developments in the area are very often focused on Machine 

Learning (ML) techniques, which perform the classification of 

intended movement based on sEMG signal acquired.  

Among the most popular ML techniques used to perform 

the signal classification are methods such as Linear 

Discriminant Analysis (LDA) [10, 11], Artificial Neural 

Networks (ANN) [12, 13], Fuzzy Logic, Neuro Fuzzy [14, 

15], Genetic Algorithms, Support Vector Machines (SVM) 

[10, 17] and Logistic Regression [18]. More recently, methods 

as Independent Component Analysis (ICA) are been used to 

identify different muscle contribution to the formation of 

sEMG signal [19]. Also, Principal Component Analysis (PCA) 

has been used in conjunction with other ML techniques as k-

Nearest Neighbors (k-NN) and ANN [20] and SVM and LDA 

[21]. These approaches intend to reduce the data 

dimensionality and provide more efficient computation to 

enhance the technique and make the embedded use more 

feasible. 

Computationally, the efficiency of the technique (more 

accuracy with less data), can be improved using two main 

strategies: I) Tuning the ML method as good as possible 

giving special attention to regularization parameters to prevent 

overfitting and underfitting of the model; II) To reduce the 

input data used on the classifier, choosing among the inputs 

that best describe the system, as presented in [22]. 

This paper presents a practical calibration of a Regularized 

Logistic Regression (RLR) algorithm that classifies 17 distinct 

upper-limb movements using three different features extracted 
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from 12 sEMG channels (Figure 1) and a walkthrough the 

choice of best input parameters of the tuned RLR method. 

Once the method is tuned, an evaluation of the impact of 

certain channel variations combined with the selected features 

is performed. In this paper, we intend to present practical 

solutions for the RLR model tuning and to explore the impact 

of some variations of channels and features on the accuracy of 

the ML method. After identify the most proper configuration 

for the signal classification, we perform a comparison of 

improvement, highlighting the method possibilities.  

 
Fig. 1.  Placement of the 12 sEMG channels used to acquire the EMG signal 

(adapted from [24]). 

II. MATERIALS AND METHODS 

A. Subjects 

In this work three different databases were utilized. The first 

one (DB1) is composed by the first 30 healthy subjects 

(subject 1 to 30) of NinaPro database, presented in [10]. The 

second one (DB2) is composed by 10 amputee subjects 

(subject 2 to 11), also from NinaPro database. The third 

database (DB3) is in current development in Laboratory of 

Electro-Electronic Instrumentation (IEE), of Graduate 

program of Electrical Engineering. The IEE database portion 

used in this work contain 10 non-amputee subjects. All 

procedures performed in these studies involving human 

participants were in accordance with the ethical standards of 

the institutional research committee and with the 1964 

Helsinki declaration and its later amendments or comparable 

ethical standards. This study was approved by the Institutional 

Review Board of Federal University of Rio Grande do Sul 

under the Certificate of Presentation for Ethical Appreciation 

(CAAE) number: 11253312.8.0000.5347. 

 

B. IEE Database (DB3) Acquisition 

The sEMG signals were acquired through a commercial 

EMG device (EMG 830 C, from EMG System do Brasil) with 

a combined gain of 2000 times and a 4th order passband filter 

tuned in 20 Hz – 500 Hz frequency, which contemplates the 

range of EMG signals for upper-limb movements, as presented 

in [23]. Both the EMG equipment and the notebook used on 

the acquisition were battery-powered, in order to avoid 60 Hz 

noise interference. The digitalization of the signal was 

performed with a 2 kHz of sampling frequency and 18 bits of 

quantization through a NI USB-6289 platform from National 

Instruments. All the signals were acquired while a sequence of 

movements were shown to the subjects sited in front of a LCD 

display. The subjects were required to reproduce 102 

movements, containing six repetitions of 17 distinct 

movements as naturally as possible, with no constraints in 

relation to time or force, as occur in NinaPro database, 

detailed in [10]. The movements performed were the same 

proposed on Exercise B of [10]. 

 

C. Signal Pre-Processing and Feature Extraction  

The pre-processing of data comprehends the processes of 

segmentation, rectification and normalization of the signal. 

For the segmentation process, the timestamps from the assays 

were used as time-reference. After the segmentation, a full-

wave rectification and the normalization of each channel was 

performed in order to provide more discrepancy to the signals 

acquired. 

 Once the signal is segmented and conditioned, the features 

(RMS value, Variance and Median Frequency) were extracted 

to be used as input parameters of the RLR method used as ML 

technique for this work. No dimensionality reduction was 

performed since the objective is to evaluate the variation of 

the chosen inputs in the accuracy rate. 

 

D. Input Parameters Variation  

For the variation of the RLR input values we used two 

factors: the sEMG channels and the combination of features 

extracted. In each main instance of test a different 

combination of channels was used to perform the 

classification. Within each channel set, all the possible 

combinations of the features were performed.  

The positioning of channels 1 to 8 is random, thus, they 

were considered as a group and an individual evaluation of 

every channel was not performed. For every instance of 

channel set, all the possible variation of features were 

performed, since 1-1 (channel group – feature group) to 11-7, 

as presented on Table I. Based on those input sets, different 

models were trained and tested. Thus, considering the 11 

channel variations and the 7 features combinations, the system 

builds 77 different models for each one of the 50 subjects. 

In order to extract the maximum of information from the 

database a k-fold (k=6) was performed. In each k instance, 

66,66% of each individual movement repetitions were used for 

training and 33,33% used for test. 
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TABLE I.  CHANNELS AND FEATURES VARIATIONS 

Channels 

Variation 

(C.V.) 

Channels Used 

Feature(s) 

Variation 

(F.V.) 

Feature(s) 

Used 

01 1 to 8 1 RMS 

02 1 to 8 + 9 2 VAR 

03 1 to 8 + 10 3 Med. Freq. 

04 1 to 8 + 11 4 RMS + VAR 

05 1 to 8 + 12 
5 RMS + Med. 

Freq. 
06 1 to 9 + 10 6 VAR + Med. 

Freq. 

07 1 to 9 + 11 7 All 

08 1 to 9 + 12   
09 1 to 10 + 11   

10 1 to 10 + 12   

11 1 to 12   

 

E. Regularized Logistic Regression Model Fitting  

This work makes use of the RLR method proposed in [17]. 

Some improvements were made in the algorithm (which now 

is capable to identify 17 movements), and in the model fitting 

(tests of coefficients to generate the most proper model). 

Moreover, now the tests are performed in 50 subjects, 

including 10 upper-limb amputees.  

The Logistic Regression (LR) model, often called 

maximum entropy classifier, consists on a probabilistic 

supervised classification method. LR makes use of Equation 

(1), also known as Logistic Equation to predict the - a 

posteriori - probability (P), of an input (x), parametrized by 

(β) on a certain instance (i), to belong (Y=1) to a certain 

labeled class. Thus, the a posteriori probability of an input 

instance to belong to a class is calculated. 

𝑃(𝑌 = 1|𝑥; 𝛽) =
1

1 + 𝑒−(β0,𝑘 +β1,𝑘 𝑥1,𝑖 +β2,𝑘 𝑥2 +β𝐶 ,𝑘 𝑥𝐶 ,𝑖)
 (1) 

To reach the most proper values for the β vector of 

coefficients, generally an optimization method is performed. 

The optimization is often performed on a cost function which 

describes the difference between hypothesis (ℎ𝛽) and the 

actual output values, aiming to minimize its value. The cost 

function 𝐽(𝛽) of the model is defined in Equation (2). 

 (2) 

In this paper we used an optimization model based on 

descent gradient, which may be considered the most classical 

optimization approach. The gradient descent method is 

utilized as showed in Equation (3). 

𝛽
𝑘+1

= 𝛽
𝑘

− 𝛼 [
1

𝑚
∑(ℎ𝛽(𝑥(𝑖)) −  𝑌(𝑖)) 𝑥𝑘

(𝑖)

𝑚

𝑖=1

] (3) 

Where β
k
 are the values of weights 𝛽 in kth instance and 𝛼 is 

the module (step size) for the gradient descent. The 

regularized version of the algorithm (used to prevent issues 

involving overfiting and/or underfiting of the model) was 

utilized.  

The regularization term (λ), prevents 𝛽
𝑘
 coefficients to 

reach high values and doing so, assures the strictly 

convergence of the cost function 𝐽(𝛽). With the 𝐽(𝛽) as a 

strictly convex function, we prevent the optimization from 

stuck in local minimum values. As detailed in [17], the 

regularized model of LR is presented on Equation (4).  

𝛽
𝑘+1

= 𝛽
𝑘

− 𝛼 [
1

𝑚
∑(ℎ𝛽(𝑥(𝑖)) −  𝑌(𝑖)) 𝑥𝑘

(𝑖)
+  

𝜆

𝑚

𝑚

𝑖=1

𝛽
𝑘
] (4) 

A more elegant formulation of Equation (4), expressed in 

terms of   𝐽(𝛽) is presented on Equation (5). 

𝛽𝑘+1
(𝑖)

= 𝛽𝑘
(𝑖)

− 𝛼 [
1

𝑚
∑ ∇𝐽𝛽𝑘

(𝑖)
. 𝑥𝑘

(𝑖)
+  

𝜆

𝑚

𝑚

𝑖=1

𝛽𝑘] (5) 

Where βk+1 is the future value of the LR coefficient model 

on the kth iteration of the optimization algorithm (gradient 

descent), ∇𝐽𝛽𝑘
(𝑖)

 is the gradient of the cost function to each i 

movement and input sample 𝑥𝑘
(𝑖)

, α is the step size of gradient 

and  the λ is the regularization parameter for the model.  

The values of α and λ are frequently chosen empirically. 

Instead of choose a random unique value, we tested a 

combination of 100 values of each parameter and based on 

accuracy rate we choose the most proper value to each subject. 

The range used was 0,005 – 0,5 for alpha and 0,00005 – 0,005 

for lambda. The most usual value was 0,1 to alpha (25 times) 

and 0,005 for lambda (30 times). 

III. RESULTS AND DISCUSSION 

Several results derived from the variation of parameters 

proposed. In the Table II, it is possible to observe the different 

accuracies for each movement and the difference among the 

databases achieved through the total variation of channels and 

features used as input parameters, as proposed in the Table I. 

TABLE II.  CHANNEL AND FEATURES VARIATIONS MEAN RESULTS 

ACCURACY RATE (%) 

Movement NON AMP. Amp. IEE Mean 

1 76,7 64,9 73,5 71,7 
2 68,7 61,9 69,6 66,7 

3 76,9 64,4 78,8 73,4 
4 65,3 66,4 68,6 66,8 

5 65,2 60,8 83,6 69,9 
6 88,15 77,6 70,5 78,8 
7 74,7 58,9 61,4 65,0 
8 65,9 56,7 67,5 63,4 
9 64,0 42,9 70,4 59,1 
10 71,1 57,3 58,7 62,4 
11 55,8 47,5 57,9 53,7 
12 63,5 52,8 68,5 61,6 
13 89,3 63,8 94,6 82,6 
14 88,0 69,9 89,2 82,4 

15 78,8 74,4 87,1 80,1 
16 80,2 62,7 87,7 76,9 

17 91,6 69,1 74,2 78,3 

Global 

Mean 
74,3 61,9 74,2 70,2 
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This table is particularly useful considering the possibility 

of choose less movements for a prosthetic use. It is perfectly 

possible to use a subset from the proposed group of 17 

movements that present a major accuracy rate or are 

considered movements of easier modeling/classification. Also, 

frequently solutions are presented for hand and finger 

movements only, ignoring movements with greater degree of 

freedom.  

In relation to databases, the amputee subjects present less 

accurate movement recognition. It is also possible to identify 

the movements that had better accuracy rate, they are: 

movement 6 (flexion of all fingers); movement 13 (wrist 

flexion); 14 movement (wrist extension); movement 15 (wrist 

radial deviation); movement 16 (wrist ulnar deviation) and 

movement 17 (wrist extension with closed hand). Our 

assumption is that those movements benefit of the position 

adopted for the electrodes because they directly dependent of 

muscles covered by channels 1 to 8 positioned around the 

radio-humeral joint. Moreover, the channels 9 and 10 are 

positioned next to the wrist, on an area that usually does not 

have a thick layer of fat tissue, improving the sEMG signal, 

which appears to describe the wrist movements properly. The 

movements 8 to 12 have a worse performance (movement 8 is 

slightly better). Movements 9, 11 and 10, 12 are quite similar 

to each other and appear to confuse not only the classification 

algorithm but the subject itself, inserting human error in the 

system, what is beyond the scope of this study. Movements 1 

to 5 are movements of more fine motor, their accuracy rates 

revolve around the global average of recognition of 

movements. 

 

A. Features Variation (F. V.)  

The results in Table II are average results considering all 

the factors and their variations. A more specific effect of the 

factors variations is presented further on this chapter, where 

all the results from the variations of channels and features are 

exposed. The Table III presents the effect of the variation of 

the features as input parameters, in average results, 

disregarding the variation of channels and movements. 

TABLE III.  ACCURACY RATE ACCORDING FEATURES VARIATION FOR 

THE THREE DATABASES 

ACCURACY RATE (%) 

Feature 

Variation 
NON AMP. Amp. IEE 

1 73,1 60,4 73,6 

2 73,6 62,0 73,3 
3 74,8 62,4 74,7 

4 75,1 62,4 74,9 

5 74,0 61,6 73,6 

6 74,6 62,4 74,6 
7 74,3 62,2 74,7 

 

The features variation does not appear to provoke a 

substantial accuracy variation. In fact the values are very close 

to each other, differing only according the database. Although, 

the features do present a pattern of tendency in the results. For 

instance, the Median Frequency (F.V. 3) presents a slight 

better accuracy – 74,8%, 62,2% and 74,4%, respectively – 

compared with the others. Likewise, RMS combined with 

Variance (F.V. 4) presented a better accuracy – 75,1%, 62,4% 

and 74,9%, respectively – than the other combinations  

(including the total combination of all features). It should be 

emphasized that the values of features are directly dependent 

on the quality/integrity of the signal, and consequently of the 

user of the system and acquisition protocol. It is possible; for 

instance, that a sEMG signal of an amputee subject to be 

discrepant to the point of not provide good results even in a 

classifier previously used for a non-amputee subject that 

presented good results. At the same time it is important to 

highlight that this paper only made use of three characteristics 

and their combination which represents a small percentage of 

the possible approaches for the sEMG signal processing. An 

analysis covering more features would be interesting to 

confirm this observed behavior and tests in order to reduce the 

number of characteristics are desired since the use of fewer 

features reduce the processing time, making the algorithm 

more computationally efficient, which is very interesting 

(mainly in practical/embedded applications). 

 

B. Channels Variation (C. V.) 

The next parameter to be variated is the group of different 

channels to be used in signal acquisition, their variations and 

their impact on the accuracy rate is presented on Table 4.  

TABLE IV.  ACCURACY RATE ACCORDING CHANNELS VARIATION 

FOR THE THREE DATABASES 

ACCURACY RATE (%) 

Channels 

Variation 
NON AMP. Amp. IEE 

1 68,6 55,3 66,2 
2 66,4 54,8 67,5 

3 61,2 51,4 64,0 

4 64,9 55,0 63,9 
5 70,9 58,5 69,4 

6 73,7 60,0 73,7 

7 80,7 66,8 80,0 

8 84,2 71,3 84,2 
9 79,9 68,3 81,1 

10 82,4 69,1 82,3 

11 83,7 70,3 84,4 

 

The number of channels used, in theory, should be more 

drastic than the number of features. This statement is based on 

the fact that the classifier inputs come from (Channels x 

Features) + 1. Thus, to remove a channel is the same as to 

remove three possible inputs (derived from three features) to 

describe the system. 

However, from the results obtained, apparently this rule that 

“the more, the better” is not absolute given the best overall 

accuracy rates achieved. The full combination of channels (C. 

V. 11) proved to be the better option only for IEE database 

and yet, its standard deviation margin includes the (C. V. 8 – 

combination of channels 1 to 9 + 12), which scores best in the 
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other two databases. Moreover, the combinations C. V. 6 

(channels 1 to 9 + 10) and C. V. 7 (channels 1 to 9 + 11) 

scores around 10% and 4% worse, respectively. These two last 

combination make use of 10 channels each, but still do not 

perform as well as C. V. 8, proving the importance of 

electrode positioning in the process.  

Likewise, the worst accuracy was not achieved in the C.V. 1 

situation, where only the channels 1 to 8 were used (68,6%, 

53,3% and 66,2%, respectively), instead, the worse accuracy 

on classification - for database IEE C. V. 3 and C. V. 4 are 

considered equal - occur on C.V. 3 with accuracies of  61,2%, 

51,4% and 64,0%, respectively. These results make it clear, 

for the data used, which channels influence most the overall 

accuracy of movements performed.  

Apparently, although there is a tendency the accuracy 

increase the extent to which the channels are increased, there 

is no guarantee that the use of more channels provide a greater 

accuracy rate. One reason for this scenario is the positioning 

of the electrodes and movements performed. It is appropriate 

that the electrodes are always positioned to capture the largest 

contribution possible of the muscle responsible for a 

movement in order to describe it. This highlights the difficulty 

of working with a random placement of electrodes and the 

difficulty of adapting systems for amputees, who do not 

always have a proper muscle condition. 

 

C. Channels and Features Variations Combined 

After an isolated analysis of channel and feature variations, 

we decide to test the simultaneous influence of factors in order 

to compare the results.  

An interesting observation is the fact that DB 2 and DB3 

have greater standard deviation compared to DB1 in all the 

tests performed, as shown on Table III and Table IV that 

represents the mean results. The same occurs when the both 

factors are varied simultaneously. We attribute this to the 

different sizes of databases (DB1 has 30 subjects while DB2 

and DB3 have 10 subjects each) and the noise presence on the 

sEMG channels.  

Moreover, on DB2 we have the problem of the lack of 

muscular tenacity that can also preclude the proper 

classification. Through the tests performed it was possible to 

observe that despite the feature variations do not affect 

drastically the overall accuracy rate, when their variation 

occur within a channel variation scenario they not only have a 

significant impact but also have a well-defined and similar 

behavior for the three databases. 

Within our tests, we observe that although the C.V. 08 still 

presents itself as the better option considering accuracy, the 

features variations are now more significant and now for two 

databases (DB2 and DB3), the F. V. 6 (RMS + Median 

Frequency) and not F. V. 4 (RMS + Variance) reflects on 

better results. Thus, we decided to compare those two 

combinations in order to define the best configuration for 

those databases. The result of the test is presented on Figure 2. 

Given the standard deviation for both techniques, one can 

conclude that equivalent in relation to the accuracy rate. 

Therefore, the combination C. V. 8 and F. V. 6 presents a 

mean value slightly superior on 33 of 51 cases (64,7%). The 

considerable standard deviation present on amputees database 

evidences how difficult is to develop a method highly efficient 

that can deal with their limitations related to musculature and 

coordination to use a prosthesis capable of reproduce a wide 

range of movements. Finally, we reach the improvement rate 

of Table V comparing the results of Figure 2.B with the 

previous results from Table II. 

Through the analysis of Table V the enhancement caused 

for the new configuration becomes evident for all the 

movements proposed. The new configuration shows itself 

capable to increase considerably even the accuracy of the 

 
Fig. 2.  Average accuracy rate using the best parameter composition for the three databases: A) C. V. 8 and F. V. 4 and B) C. V. 8 and F. V. 6. 
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movements with lowest rates such as the movements 9 to 12. 

The average tax of improvement offered by the new input 

configuration was 16,9% but average values such as 25,7% 

were obtained for movement 9, considering all databases. 

TABLE V.  IMPROVEMENT OF ACCURACY RATE ACCORDING THE 

SELECTED INPUTS 

ACCURACY RATE (%) 

Movement 
DB 1 

(MEAN) 

DB 2 

(Mean) 

DB 3 

(Mean) 

Overall 

Mean 

1 13,3 19,2 19,9 17,5 

2 10,2 8,9 14,5 11,2 

3 10,6 11,6 14,5 12,2 

4 14,4 13,6 18,9 15,6 

5 13,8 15,1 10,7 13,2 

6 8,25 8,3 12,9 9,8 
7 14,8 17 22 17,9 

8 18,6 15 18,4 17,3 

9 18,8 18 16,3 17,7 

10 20 16,8 9,6 15,5 
11 17,9 15,9 12,1 15,3 

12 12,6 12,1 14,8 13,2 

13 6,3 6,2 3 5,2 

14 8,2 8,5 9,1 8,6 
15 12,5 10,6 10,4 11,2 

16 4,7 10,7 8,2 7,9 

17 5,1 8,5 9,9 7,8 

Global Mean 12,4 12,7 13,3 12,8 

 

IV. CONCLUSION 

A Regularized Logistic Regression algorithm was used to 

classify 17 distinct upper-limb movements through sEMG 

signal processing. Different inputs for the RLR method were 

proposed based on 12 channels utilized in 11 combinations 

and 3 features used in 7 combinations to identify the 

configuration capable of reach the great accuracy rate among 

them all. The experiments were conducted on an extensive 

dataset with 50 subjects (10 amputees), very rarely seen in this 

study field. 

Through the results achieved it was possible to define the 

best configuration of channels for the three databases tested 

(C. V. 8). Moreover, it was possible to define the best 

configuration for the features (F. V. 4 & F. V. 6) among those 

used and also to analyze the influence of different 

configurations combined with the variations of the channels. 

After all the tests and considerations, we reach a unique 

configuration that we compared with the global mean and 

demonstrate its capacity of enhancement. The overall 

percentage on improvement is around 13%, considering all 

movements. Additionally, the movements with higher 

accuracy rate were identified (1, 3, 6, 7, 10, 13-17), which 

may give an expected good result of the method applied on a 

prosthetic limb.  

The most proper configuration is capable of not only 

increase the classification accuracy but to do that using less 

information, once it does not use the all channels and features 

scenario. Thus, we conclude that this technique could be 

placed on a calibration stage of an embedded system in order 

to establish the most proper inputs considering some pre-set 

channels and features for the system. It would be also 

interesting to compare the developed approach with the 

technique described in [22] and also to perform feature 

reduction methods as well (e.g. PCA). That would help to 

compare the efficiency and limits of each technique. 
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