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Abstract— A robotic system is a reconfigurable element, and in 

its programming, an algorithm can be implemented in order to 

detect and classify failures. This is an important step to ensure that 

errors in actions do not cause damage or bring risks. Considering 

this, a Neural Network Multi Layer Perceptron (MLP) was used, 

in order to classify a set of failures in robot actuators, present in a 

database. This purpose is to analyze if robotic failures could be 

classified by MLP. The raw data are divided in a temporal 

progression manner and torque in x, y and z axes. In total, five 

MLP neural networks were implemented for each type of failure 

classification, using two different topologies. The number of 

neurons in the hidden layer is in accord with the criteria of 

Kolmogorov and Weka, being the latter the best topology for such 

application. In comparison to an algorithm (SKIL) using the same 

set of data, the MLP obtained the best performance in any 

topology of classification, with hit rates in 80 to 90%. 

Index Terms— Failures; Robotic; Neural Network. 

I. INTRODUCTION 

obots replace human jobs and are used in hazardous 

environments, in which access may be difficult and in 

places where are present repetitive tasks. They bring efficiency 

regarding time and costs while also minimizing risky situations. 

However, as in any system, every robot is susceptible to failures 

and errors while executing a task. Furthermore, in systems 

containing risk factors, – as in robotic systems – non-detected 

failures or faults may have catastrophic consequences, causing 

financial losses, environmental damage, or even casualties. 

A robotic manipulator is a mechanical structure composed of 

links connected to each other through joints, which are free to 

move according to one or more degrees of freedom [1,3]. When 

its structures and movements have anthropomorphic behavior, 

they are known as robot manipulator, which carry the same 

functionalities as a human arm, controlling position and 

orientation [4-5]. A notable characteristic of a robotic system is 

the capability to reconfigure the control system (usually 

executed by a microcontroller, microprocessor or other type of 

intelligent system) [4]. 

Therefore, considering that a robotic system is reconfigurable, 

it is possible to set failure tolerance parameters, which is a 

developer powerful tool [2]. Regarding recognition and 

diagnosis of a failure, mathematic models are used to reproduce 

the dynamic behavior of a faultless system. To identify a 

failure, it is analyzed the difference between a predicted output 

and the actual one [2]. 

In recent years, many types of research related to neural 

networks have been applied in a diversity of problems in areas 

such as pattern recognition, signal processing, image 

processing, process identification, and nonlinear system 

mapping [2,6]. Using these very same functions, robotic 

systems may have a neural network as a way to identify and 

classify failures. They lead to faster diagnostics and treatment 

[2,7]. 

This work aims to use an artificial neural network to assess if it 

is possible to classify failures in robots when a movement is 

performed. This is accomplished by evaluating both parameters 

of torque and force, based on a temporal learning of these data. 

The neural network was chosen as a classification system due 

to its easiness to execute, fast response once trained, high 

generalization, and learning rate to solve problems, especially 

nonlinear ones. A database containing movements of a given 

robot in situations of failure (available in [8], data already 

classified) was used for training and testing. This proposal is 

based on a Multi-Layer Perceptron (MLP) neural network to 

recognize classes of errors and to compare results gathered by 

different topologies. These topologies are based on the criteria 

of both Weka and Kolmogorov, bringing robustness and 

reliability to the system. 

Regarding the network, the unprocessed (raw) data are used. 

The result was also compared to a classification of these data in 

an intelligent structure known as SKIL [9]. Once a failure is 
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identified, the robot is capable of performing a corrective action 

whilst the diagnosis is a pattern already classified.  

II. DATA 

The application data represent a set of five failure classes 

described in the work of Lopes and Caraminha-Matos (1998) 

[9]. These data were taken by a case study from a “pick and 

place” operation, in other words, a task in which the robot grabs 

a piece (grasp operation), move it to the desired position, and 

drop it in a predetermined place (ungrasp operation). In grasp 

operation, 88 samples were acquired, 47 samples in movement 

operation, and 117 samples in ungrasp operation. 

Each sample is a set of 90 data, organized in a matrix of 6 

columns and 15 rows. The columns represent the data obtained 

of the robot, near the last degree of freedom, being respectively: 

the force in x-axis (Fx), force in y-axis (Fy), force in z-axis (Fz), 

torque in x-axis (Tx), torque in y-axis (Ty), and torque in z (Tz). 

The 15 rows describe the data time evolution, with an interval 

of 315 ms between each. The failure detection mechanism 

needs to consider that the movement execution requires a time 

to perform, which delays the analysis; therefore, time 

progression is used to identify the classes [9].  

The samples were divided into five classes (failure class) to 

aid and identify the problems of the system to understand and 

learn; which are [8-9]: 

 LP1: Failures in approaching to the grasp position; 

 LP2: Failures in displacement of a part; 

 LP3: Position of a part after a displacement failure; 

 LP4: Failures in approaching to ungrasp position and; 

 LP5: Failures in motion with a part. 

Each one of these main classes is divided into other 

conditions, according to Table 1, that also presents the quantity 

of data in each class.  

 

TABLE I.  PROBLEM CLASSES, CONDITIONS AND THEIR DISTRIBUTION 

Failure  

Class 
Conditions 

Distribution 

(%) 

Quantity  

of Data 

LP1 

Normal 24 

88 
Collision 19 

Frontal Collision 18 

Obstruction 39 

LP2 

Normal 43 

47 

Front Collision 13 

Back Collision 15 

Collision to the right 11 

Collision to the left 19 

LP3 

 Ok 43 

47 
Slightly moved 19 

Modev 32 

Lost 6 

LP4 

Normal 21 

117 Collision 62 

Obstruction 18 

LP5 

Normal 27 

164 

Bottom Collision 16 

Bottom Obstruction 13 

Collision in Part 29 

Collision in Tool 16 

 

The data arrangement is presented in Fig. 1, containing a 

normal signal (a) and an obstruction signal (b). It is notable the 

difference between them. Whilst a signal considered normal has 

a smooth action in the three-axis of force and torque, the signal 

that represents the failure has expressive changes among the 

dimensions.  

 

 

Figure 1.   The signal example of the database representing a) a normal signal 

and b) obstruction of a part. 

III. MULTI-LAYER PERCEPTRON 

The MLP (Fig.2) is a one-layer Perceptron variant that 

contains at least one neuron hidden layer in addition to the input 

layer and output layer. These networks have high applicability, 

such as information processing, function approximation, 

temporal series prediction, and pattern 

recognition/classification which is intended by this work [10-

11]  

This architecture is feedforward, in other words, the 

information propagates in only one direction. The training is 

Samples

Samples

(a)

(b)

Samples

Samples

(a)

(b)
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performed in a supervised way through the backpropagation 

algorithm, which consists of two steps. In the first step 

(forward), the signal sample is inserted in the input and 

propagated among the hidden layer to the output. Depending on 

the output produced and the desired value, it obtains the error. 

The synaptic weights are adjusted by the error value, from 

output layer to the input layer (this is the backward step) [10]. 

These steps are repeated successively until the error is 

considered tolerable. 

To the MLP, the activation function used in the output of 

each neuron must be non-linear and differentiable at any point 

[12]. The logistic and hyperbolic tangent functions are used 

because this criteria. [10,12]. 
 

Five MLP neural networks were implemented for each 

failure classification (LP1 to LP5). This action was adopted 

taking into account that the data validated by the classification 

system in [9] were performed on each class. Furthermore, in a 

real field application, the time of a system using only one 

network could present a higher delay than when working in 

parallel due to the number of math operations involved in the 

results of the network. 
 

 
Figure 2.  MLP used topology model. 

A. Implementation Characteristics 

The MLP topology, presented in Fig. 2, has one input layer, 

one hidden layer, and one output layer. Each sample has 90 

data; and adding the activation threshold of each neuron in the 

hidden layer, the input then consists of 91 terms. In other words, 

the set of 90 data, which were in a matrix of 15 rows (temporal 

displacement) and 6 columns (forces and torques), was 

distributed in a single vector. The synaptic weights matrix W1 

represents the synapses among each input and each hidden layer 

neurons. This layer has n1 number of neurons, which was 

defined by two criteria. The first one, Kolmogorov’s method 

[10], is determined by (1)    

 

1n = 2n +1 (1) 

 

Where n1 is the number of neurons in the hidden layer and 

n is the number of network inputs. The second method tested 

was the one implemented in Weka’s platform (Waikato 

environment for knowledge analysis) [10], in which the number 

of neurons of the hidden layer is defined by the following 

expression (2)  

 

c
1

n + n
n =

2
 (2) 

 

Where nc is the quantity of conditions to be separated. 

Among the hidden layer and the output layer, there is a matrix 

(W2) of synaptic weight connections. The number of neurons in 

the output layer n2 matches the quantity of failure classes, from 

LP1 to LP5, for each network. For example, in the data obtained 

in LP1, the output vector consists of four terms (YA, YB, YC, 

YD). Table 2 presents the output resultant for each pattern. 

TABLE II.  MODEL OF THE DESIRED OUTPUT FOR EACH CLASS OF LP1 

Output 

Conditions 
YA YB YC YD 

Normal 1 0 0 0 

Collision 0 1 0 0 

Obstruction 0 0 1 0 

Frontal Collision 0 0 0 1 

 

 Moreover, the Table 3 presents a quantity of outputs and 

hidden layers among each one of the groups from LP1 to LP5. 

By the Kolmogorov’s method, all the networks have all 181 

neurons in the hidden layer. On the other hand, for the criteria 

used in Weka, the quantity of neurons are presented in Table 3. 

TABLE III.  QUANTITY OF NEURONS IN EACH OUTPUT LAYER AND HIDDEN 

LAYER IN WEKA ORIENTATION. 

 Y2 n1(Weka) 

LP1 4 47 

LP2 5 48 

LP3 4 47 

LP4 3 47 

LP5 5 48 

 

Mathematically, the behavior of the MLP could be 

evaluated in forward step by the equation (3), based on [10]. 

The network output (Y2) is the result of the operations among 

the input vector X, the synaptic weight matrixes W1 and W2 

(which are transposed), and the activation functions (g1 and g2).   

 
T T

2 2 1 1 2= g (g ( × ) )Y X W W  (3) 

 

All parameters are found in Fig 2. It is important to notice 

that I1 is the result of the operation between X and W1; Y1 is the 

output vector of hidden layer neurons; and I2 is the resultant 

between Y1 and the synaptic weights W2. In I2 , the term -1 is 

given to each neuron as the activation threshold of the output 

layer. The activation function g1 matches the action of the 

hyperbolic tangent. This function was chosen because the input 

data has positive and negative values, which compose this 

function domain. The hyperbolic tangent is given by (4) 

 

= tanh(b )1g a  (4) 
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Where tanh is the trigonometrical function of the hyperbolic 

tangent, b is the function inflection coefficient and a is the input 

vector. On the other side, the logistic function is given by (5) 

 

2

1
=

1 exp( b )  
g

a
 (5) 

 

Where exp is the exponential function. For g2 was chosen a 

logistic function as activation function because the output value 

is in the range from 0 to 1. 

Back to training step, in backward, the weight adjustment is 

done from output to input layer. The used method adopts the 

gradient to minimize the error between the actual and the 

desired output, elicited in [10]. The gradient in W2 is calculated 

by (6) 

 

= ( - )×g'( )2 2 2δ d Y I  (6) 

 

Where δ2 is the local gradient value in regard to output layer, 

d is the vector/matrix of desired output, and g’ is the derivative 

of the activation function. Hence, it is noticeable that the 

activation function must be entirely differentiable. With the 

gradient, the adjustment of the weights of W2 can be obtained 

by (7) 

 

= +η× ×2 2 2W W Y
2
δ  (7) 

 

Where η is the learning rate. The next step is the adjustment 

of the weights W1. Thus, the hidden layer gradient must be 

calculated by (8) 

  

2 1= ( - )×g'( )1 2δ δ W I  (8) 

 

Where δ1 is the local gradient of hidden layer. Therefore, 

the adjustment of synaptic weights W1 is given by (9)  

 

= +η× ×1 1 1W W δ X  (9) 

 

The stop criteria and error are based on EM: the average of 

the mean squared error. On the other hand, it can be obtained 

by (10) 

 

2

M

1 1
E = ( - )

p 2

 
 
 

  2d Y  (10) 

 

Where p is the total number of samples of error. When the 

difference between the error in two consecutive iterations of 

training step is small, the expression (11) is used to obtain the 

precision (ε) 

 
Actual Previous

M ME - E ε  
 

(11) 

 

Where EM
Actual

 is the mean squared error of the actual 

iteration whilst EM
Previous is the mean squared error of the 

previous iteration.  

The data were separated to system validation and were 

forwarded to each network. The Table 4 presents the quantity 

of data divided into training and validation. The 

recommendation in [10] was used, where 60 to 90% of data is 

used for training and 10 to 40% is used for validation, based on 

the number of conditions in each class. 

TABLE IV.  QUANTITY OF DATA FOR TRAINING AND VALIDATION OF MLP 

Data 

Classes 
Training Validation 

LP1 72 16 

LP2 37 10 

LP3 37 10 

LP4 93 24 

LP5 134 30 

 

IV. MLP IMPLEMENTATION 

The MLP code was implemented in MATLAB® software. 

The code was divided into two main stages: training and 

validation. The training stage is divided in initial settings (such 

as data loading, the creation of variable and constants) and the 

training in itself. It is in the training stage that both forward and 

backward steps are done. As a stop criterion, it was established 

the precision of mean square error and the quantity of epoch.  

Thus, the precision and the mean square error were plotted 

according to the quantity of epochs, analyzing the evolution of 

error correction. The Fig. 3 presents a case of precision and 

mean square error obtained in a training. The curve behaves as 

a decreasing exponential because the error always tends to the 

smallest value possible.     

In the validation stage, the adjusted weights are used with 

the data separated for testing. As the end of training stage, the 

greatest value was identified and defined as 1 to facilitate the 

approximation.  

Among the setting parameters, the learning rate was 

determined as 0.1, the precision as 1e-9, and the inflection 

value of hyperbolic tangent and logistic function as 0.5. These 

parameters were chosen after a few tests performed on the 

network and analysis of convergence of weight values. 

 

 
Figure 3.  a) Precision e b) Mean Squared Error obtained in a training stage.  
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V. RESULTS 

Each network with the suggested topologies was submitted 

to 30 trainings. This number was chosen empirically, proving 

to be a reasonable quantity to assess the rate of success in each 

topology. After each training and validation, their synaptic 

weights and hit rates were gathered, in which Figure 4 presents 

the results obtained in each topology during the training. It was 

presented the minimum value, the median value, and the 

maximum value, where K represents the Kolmogorov’s 

method, whilst W, Weka. The majority of training obtained 

more of 80% of data classification. However, the median values 

held the pattern of 85 to 95 %. Kolmogorov was the topology 

that obtained more hits; nevertheless, with exception of LP5, 

the topology that obtained less standard deviation among the 

samples was Weka. On this subject, Weka topology presents a 

slighter gain.  

 

 
Figure 4.  Results of each topology in training data classification.  

The Figure 5 presents the quantity of hits in network 

validation. In LP1, LP3 and LP5 classifications, there were 

equal percentages of maximum hits, and Weka’s topology 

obtained the lowest deviation and greatest median values. In 

LP2, Weka has the largest amplitude and lowest deviation, 

whilst the situation in LP4 favors the topology by Kolmogorov 

in a larger quantity of hits, but in lower deviation. Thus, Weka 

presents the better result for each data class. 

 

 
Figure 5.  Results of each topology in validation data classification.  

Lastly, the average of all data is presented in Figure 6, 

containing the classification percentage of all data, from 

training to validation. Regarding the maximum quantity of hits, 

both networks have the same behavior, however, again, 

regarding the lowest deviation and the highest mean, Weka has 

the best performance. It stands out that the Weka’s criterion for 

this application obtained the better advantages than 

Kolmogorov’s method. It highlights that the differences 

occurred in small margins. 

 

 
Figure 6.  Results of each topology in all data classification pattern (training 

and validation).  

Comparing to the study presented in [9]; there were 

improvements in the method regarding data classification. 

Taking only the mean values, presented in Figure 6, and the 

classification obtained in data without any processing, it can be 

analyzed in Table 5 the performance of MLP networks (as 

Kolmogorov’s and as Weka’s).   

TABLE V.  COMPARISON OF THE HIT PERCENTAGES AMONG TOOL SKIL [9], 
AND THE MLP NEURAL NETWORK OF NUMBER OF NEURONS OF HIDDEN LAYER 

WITH ORIENTATIONS KOLMOGOROV AND WEKA. 

Topology 

Class 

SKIL[9] 

(%) 

MLP(K) 

(%) 

MLP(W) 

(%) 

LP1 78 84,161 90,45 

LP2 45 82,757 78,595 

LP3 49 78,486 79,405 

LP4 65 85,777 80,288 

LP5 61 80,288 82,41 

 

VI. DISCUSSION 

Looking at all data and Figures 4, 5, and 6, it is possible to 

notice that Weka’s orientation has the best performance. 

Besides having a numerical result, there is also both 

construction and execution time aspects. A Weka matrix has 

fewer values than a Kolmogorov matrix; that is because it has 

less number of neurons. Comparing a weight matrix of 91x181 

to a 91x48, as in LP1, there is a reduction of more than ¼ of the 

matrix size, reducing the time spent in processing and 

calculating. There is an average of 20 seconds to train, but it 

goes down to the range of 6-10 seconds in Weka’s orientation.  

Another important aspect disclosed in [9] are the results 

shown using data processing, increasing classification’s 

performance. In order to do a comparison and to create the 

network, only raw data (unprocessed) were used. Moreover, the 

data was normalized using Tales’ standards, vectors standards, 

and Euclidian distance. However, best results were achieved 

using the original form and values. That is because, in 

normalizations, there are data with high discrepancy between 

maximum and minimum values. Most data are located in an 

intermediate domain, not too high and not too low. This is the 

reason why data was stuck in a single value with minimal 

changes on the first four decimal places.  Final Considerations 
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Lastly, it is possible to confirm the behavior of the network 

by the results obtained. Even as a preliminary study, this work 

has already shown good results. This way, it is proven that 

errors from robot manipulators can be classified by means of 

temporal progression of force and torque in a neural network. 

The MLP topology, where the number of neurons on the hide 

layer is suggested by Weka, managed to stand out in every 

stage. However, the greatest analysis is that the data can be 

separable and classifiable, which was a relevant question raised 

when creating the system. 

Future works intend to use other types of networks 

topologies, such as Basel Radial, Kohonen’s self-organizing 

maps and Extreme Learning Machine, in order to compare 

results aiming for better classifications. 
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