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Abstract —This study aims to present a PI-Fuzzy and PID-
Fuzzy design to control the position while maintaining the balance 
of an inverted pendulum system. This type of system is well known 
for its challenge in carrying out the control and its similarities and 
applications in other systems, such as transport vehicles and 
robots. Thus, being a famous and important system to be used as 
a control benchmark. Nonlinear dynamic equations for the 
inverted pendulum were obtained through the Lagrange 
formulation. An adaptive PI-Fuzzy and PID-Fuzzy controller was 
designed and implemented on the nonlinear model. The final 
results demonstrate a great increase in performance, both on 
displacement and dynamics balance, when compared to the classic 
PI and PID controllers, especially when in the presence of 
parametric changes in the system. Another contribution of this 
paper is to demonstrate how the proposed fuzzy system can 
improve the response of a complex system with classical 
controllers. 

Index Terms—control design, fuzzy control, fuzzy logic. 
 

I. INTRODUCTION 
HE inverted pendulum can be considered a classical 
problem in the control domain, where the same can be used 

as a benchmark for the performance of different controllers and 
designs. This system is also used as the basis for numerous 
engineering projects, such as vehicles, robots, missile 
launchers, among several other mechanical and aeronautical 
devices and systems that need to maintain a certain physical 
balance [1-3]. 

The system is well known for showing a strong nonlinear 
behavior and a specific coupling between the linear movement 
of the cart and the angular displacement of the pendulum. The 

challenge of the control design is to maintain the system in an 
unstable equilibrium point i.e., the pendulum pointing upwards, 
where the angle of the pendulum is indirectly controlled by the 
displacement of the cart [1], [3-6]. 

As it is a classical problem, several studies have proposed 
controllers for this kind of system, especially optimal state 
space controllers [7-8]. However, most of these techniques 
require a great deal of mathematical knowledge, often 
unavailable in the non-academic industrial environment, as well 
as a very rigorous analysis of the process plant. Because of these 
points mentioned, the classic controllers (PI and PID, for the 
most part), still remains the most practically used and favored 
controllers [9], when a fast and functional control design is 
needed. Thus, a way to improve its performance without 
increasing its complexity is a great challenge of nowadays 
studies. 

The most common design process of a classic controller 
involves the use of the equations that represents the dynamical 
system, sometimes called plant. Nevertheless, this model will 
naturally show some differences when compared to the real 
system or process. These differences are normal and often result 
from mathematical considerations such as boundary conditions, 
physical parameters or simplifications. However, it is clear that 
the designed control must also satisfy the performance 
requirements of the real system. This is the fundamental 
concept when it comes to the robustness of the controller. A 
good alternative to increase the robustness of the controller are 
the so-called adaptive systems. In this type of controller, the 
gains are adjusted in an online manner, according to the 
system's response and necessities [10]. This kind of control 
design can be used not only for the parametric uncertainties, but 
also to adapt an existing controller to work into another similar 
system, without the need to change or recalculate de control 
gains. 

A way to combine the advantages of a classic controller with 
characteristics of adaptability is to use the fuzzy logic. In this 
type of logic, concepts of intuitive linguistic rules are used 
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instead of the common Boolean logic [11-12]. This allows the 
project of complex system’s controllers to be designed in a 
simplified way, while still maintaining a high-performance 
level.   

One of the objectives of this paper is to show a simple, yet 
quite powerful, adaptive control design, that combines the ease 
of the PI an PID design with the robustness of real-time adjusted 
gains through a fuzzy logic.  

Another contribution is to demonstrate how fuzzy inference 
can help improve the result of a system that has a not so trivial 
classical controllers design, and how the fuzzy system can 
contribute to applications where the controllers were initially 
poorly projected due to some situation like a complex system, 
high order systems or systems with more than one output and/or 
input. 

This work is organized as follows: Section II presents the 
process to obtain the non-linear dynamic model of the inverted 
pendulum; Section III exhibits the PI and PID classical control 
design used in this system, as well as the linearization and the 
transfer functions of the plant.  Section IV expands the control 
design, presenting its new structure and the design of the fuzzy 
logic used; Section V presents and discusses the numerical 
results for the different tests executed. Finally, Section VI 
presents the main considerations about the paper. 

II. DYNAMIC MODEL 
Fig.1 shows the dynamic model with lumped parameters for 

the inverted pendulum used in this paper. The rigid pendulum’s 
rod was considered to be massless, where all the mass of the 
pendulum is located in a concentrated point at his tip. This is a 
common consideration in the literature that aims to simplify the 
model making the distance to the center of mass of the rod equal 
to the pendulum length (reducing the elements that acts on the 
inertia of the rod, generally related to the kinetic energy 
equation). Several authors make this consideration in a great 
plethora of different applications (e.g., dynamics analysis, 
control, education), as can be seen in [12-17]. In this paper, we 
chose to make this consideration in order to facilitate the 
analysis of the pendulum's rod mass variation and its influence 
on the control - similar results could be found by varying the 
center of mass of a pendulum’s rod (and thus its mass itself) in 
a distributed mass case. 
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Fig. 1.  Lumped parameter model for the inverted pendulum. M is the total mass 
of the cart, m is the concentrated mass of the rod located on the pendulum tip, 
l is the length of the pendulum, x is the displacement made by the cart, θ is the 
angle of the pendulum, b is a rod damping constant, and c is the damping 
constant of the track. 

The objective of the project is to control the position of the 
cart at the same time that the pendulum is balanced, thus the 
system will then present two degrees of freedom: the position 
of the cart 𝑥𝑥 and the angle of the pendulum 𝜃𝜃.  

In this work, Lagrange's Equations were used to obtain the 
dynamic model of the mechanical system. The system 
equations can be obtained using (1). 
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where 𝑞𝑞𝑖𝑖 are the generalized coordinates that define the 
movement of the system. 𝐿𝐿 is called Lagrangean and is given 
by the difference between the total kinetic energy 𝑇𝑇 and the total 
potential energy 𝑈𝑈. 𝑄𝑄𝑖𝑖 are the generalized forces. The 
dissipative frictional forces that exist between the cart and the 
track, and between the pendulum rod and its fixing point in the 
cart were defined in this work using the dissipative function of 
Rayleigh, and both are described by the 𝑅𝑅 in the Eq. (1) [18]. 

The total kinetic energy 𝑇𝑇 of the system is given by (2). 
 

𝑇𝑇 =
1
2
𝑀𝑀𝑥̇𝑥2 +

1
2
𝑚𝑚(𝑥̇𝑥𝑝𝑝2 + 𝑦̇𝑦𝑝𝑝2) (2) 

 
where 𝑥̇𝑥𝑝𝑝 and 𝑦̇𝑦𝑝𝑝 are the velocities in the Cartesian coordinates 
𝑥𝑥 and 𝑦𝑦 of the pendulum point mass. Considering the 
counterclockwise direction as positive in the angle increment, 
one will have 𝑥̇𝑥𝑝𝑝 = 𝑥̇𝑥 − 𝑙𝑙𝜃̇𝜃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)   and 𝑦̇𝑦𝑝𝑝 = −𝑙𝑙𝜃̇𝜃𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃). After 
some substitutions and mathematical treatment, the total kinetic 
energy of the system has the final form given by (3). 

 

𝑇𝑇 =
1
2

(𝑀𝑀 + 𝑚𝑚)𝑥̇𝑥2 +
1
2
𝑚𝑚𝑙𝑙2𝜃̇𝜃2 − 𝑚𝑚𝑚𝑚𝜃̇𝜃𝑥̇𝑥cos (𝜃𝜃) (3) 

 
The potential energy 𝑈𝑈 comes from the effect of gravity on 

the pendulum y direction, the same being given by (4). 
 

𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚cos (𝜃𝜃) (4) 
 
where g is the acceleration of gravity. 
 

The two dissipative forces considered in the model are given 
by (5) and (6). 

 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1
2
𝑐𝑐𝑥̇𝑥2 (5) 

 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1
2
𝑏𝑏𝜃̇𝜃2 (6) 

 
Considering the two generalized coordinates as 𝑥𝑥 and 𝜃𝜃, and 

replacing (6), (5), (4), (3) and (2) in (1) for both generalized 
coordinates, it is possible to obtain the system of equations for 
the dynamic system. 

 

𝑥̈𝑥 =
𝑚𝑚𝑚𝑚𝜃̈𝜃 cos(𝜃𝜃) −𝑚𝑚𝑚𝑚𝜃̇𝜃2 sin(𝜃𝜃) − 𝑐𝑐𝑥̇𝑥 + 𝐹𝐹

𝑀𝑀 + 𝑚𝑚
 (7) 
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𝜃̈𝜃 =
𝑚𝑚𝑚𝑚𝑥̈𝑥 cos(𝜃𝜃) + 𝑚𝑚𝑚𝑚𝑚𝑚 sin(𝜃𝜃) − 𝑏𝑏𝜃̇𝜃

𝑚𝑚𝑙𝑙2
 (8) 

 
As can be seen, the system consists of two coupled second 

order nonlinear differential equations. Initially, the system had 
its equations decoupled. Eq. (9) and (10) presents the system 
after the calculations.  

 
𝑥̈𝑥 =

(−𝑚𝑚𝑚𝑚𝑚𝑚 sin(𝜃𝜃) + 𝑏𝑏𝜃̇𝜃 cos(𝜃𝜃) − 𝑙𝑙(−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)𝜃̇𝜃2 − 𝑐𝑐𝑥̇𝑥 + 𝐹𝐹))
𝑙𝑙(cos(𝜃𝜃)2 𝑚𝑚 −𝑀𝑀 −𝑚𝑚)  (9) 

 
𝜃̈𝜃 =

−𝑙𝑙𝑙𝑙�−𝑚𝑚𝑚𝑚 sin(𝜃𝜃)𝜃̇𝜃2 − 𝑐𝑐𝑥̇𝑥 + 𝐹𝐹� cos(𝜃𝜃) + (𝑀𝑀 + 𝑚𝑚)(−𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) + 𝑏𝑏𝜃̇𝜃)
𝑚𝑚𝑙𝑙2(cos2(𝜃𝜃)𝑚𝑚 −𝑀𝑀 −𝑚𝑚)

 (10) 
 
Table 1 shows the initial physical parameters used for the 

numerical simulations performed in this paper. 
 

TABLE I 
PARAMETER FOR SIMULATIONS 

Symbol Quantity Value 

𝑀𝑀 cart mass 1.5 kg 
𝑚𝑚 pendulum mass 0.3 kg 

𝑙𝑙 pendulum length 0.4 m  
𝑐𝑐 dissipative constant of the track 0.05 Ns/m 
𝑏𝑏 dissipative constant of the pendulum rod 0.05 Ns/m 
g gravitational acceleration 9.81 m/s2 

 
To test the functioning of the model, Fig. 2 shows the 

behavior of the system when F = 0 and with the following initial 
conditions: 𝑥𝑥0 = 0, 𝑥̇𝑥0 = 0 𝜃𝜃0 = 0.1 and 𝜃̇𝜃0 = 0. 
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Fig. 2.  Open-loop system response. 

 
As can be seen, the pendulum starts up with the initial angle 

value, where it falls over time to 𝜋𝜋 rad (180º or pendulum 
pointed downwards). All the speed values tend to zero, as 
expected from a system without any kind of force being applied. 
This simple open-loop simulation was used to demonstrate the 
functionality of the proposed model. 

III. PI AND PID CONTROL 
The first step in the design of the controllers for this project 

is the design of the PI and PID control. The control gains found 
in this stage of the work will later also be used as part of the PI-
Fuzzy and PID-Fuzzy control. 

 

A. Plant Linearization 
Before the PI and PID controllers can be designed, the plant 

needs to be linearized. Assuming that the pendulum will move 
close to 𝜃𝜃 = 0, consequently one will have: 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) ≈𝜃𝜃, 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) 
≈1 and 𝜃̇𝜃2 = 0. Thus, (7) and (8) will be rewritten in the form 
presented by (11) and (12). 

 

𝑥̈𝑥 =
𝑚𝑚𝑚𝑚𝜃̈𝜃 − 𝑐𝑐𝑥̇𝑥 + 𝐹𝐹

𝑀𝑀 + 𝑚𝑚
 (11) 

 

𝜃̈𝜃 =
𝑚𝑚𝑚𝑚𝑥̈𝑥 + 𝑚𝑚𝑚𝑚𝑚𝑚θ − 𝑏𝑏𝜃̇𝜃

𝑚𝑚𝑙𝑙2
 (12) 

 
The next step is to take the Laplace transform of the 

equations considering initial conditions equal to zero. Since it 
is desired to control both the position of the cart and the angle 
of the pendulum, two transfer functions will be necessary. One 
related to the movement of the cart and another related to the 
angle of the pendulum. After the Laplace transform, it is enough 
to isolate each equation with respect to the output variables (X 
(s) and Θ (s)) through a simple substitution. Eq. (13) and (14) 
presents the two transfer functions used for the design of the 
controllers. 
 
𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠) =

𝑚𝑚𝑙𝑙2𝑠𝑠2 + 𝑏𝑏𝑏𝑏 −𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝑠𝑠4 + (𝑐𝑐𝑐𝑐𝑙𝑙2 + 𝑏𝑏(𝑀𝑀 + 𝑚𝑚)𝑠𝑠3 + (𝑐𝑐𝑐𝑐 − (𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚)𝑠𝑠2 − (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)𝑠𝑠 (13) 

 
Θ(𝑠𝑠)
𝐹𝐹(𝑠𝑠) =

(𝑚𝑚𝑚𝑚)𝑠𝑠
𝐴𝐴𝑠𝑠3 + (𝑐𝑐𝑐𝑐𝑙𝑙2 + 𝑏𝑏(𝑀𝑀 + 𝑚𝑚)𝑠𝑠2 + (𝑐𝑐𝑐𝑐 − (𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚)𝑠𝑠 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (14) 

 
where 𝐴𝐴 = (𝑀𝑀 + 𝑚𝑚)𝑚𝑚𝑙𝑙2 − (𝑚𝑚𝑚𝑚)2. 

 

B. Controllers project 
Figure 3 shows the block diagram for the position PI and 

angle PID control of the inverted pendulum. 
As can be seen, two controls will be used, a PI for the position 

and a PID for the pendulum angle. The position error is given 
by (15). 

 
𝑒𝑒𝑥𝑥 = 𝑥𝑥𝑟𝑟 − 𝑥𝑥 (15) 

 
where 𝑥𝑥𝑟𝑟 is the desired position reference and 𝑥𝑥 is the current 
cart position. 
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Fig. 3.  PI and PID block diagram. 

 
The pendulum angle error is defined by (16). 

 
𝑒𝑒𝜃𝜃 = 𝜃𝜃𝑟𝑟 − 𝜃𝜃 (16) 

 
where 𝜃𝜃𝑟𝑟 is the desired angle reference, in this case being zero, 
and θ is the current angle. 

The total control signal was considered as the sum of the two 
control inputs, as stated in (17). 

 
𝐹𝐹 = −𝑓𝑓𝑥𝑥 + 𝑓𝑓𝜃𝜃 (17) 
 
Using Table 1 for the physical parameters and (9), the PI and 

PID controllers were designed for the system using the 
Matlab® Sisotool. Manual adjustments were also made through 
numerical simulations of the controller. Table 2 shows the gains 
obtained for both the controllers. 
 

TABLE II 
CONTROLLERS GAINS 

Controller Kp Ki Kd 
Cart Position 60 0.5 - 

Pendulum Angle 180 650 15 
 
As can be seen, the design of classic controllers for this 

system is not so simple due to the two variables to be controlled. 
To find the gains of the controllers one must analyze the two 
plants shown by (9) individually, and this makes it difficult to 
find optimal gains that satisfy the response behavior for both 
the pendulum and the cart. This is an example of a contribution 
that comes from the fuzzy system in this more complex plant, 
where it can help improve the performance of classic controllers 
that are not so well designed due to some circumstance. 

IV. PI-FUZZY AND PID-FUZZY CONTROL 
Fig. 4 shows the block diagram for the PI-Fuzzy and PID-

Fuzzy control proposed for the system. 
 

+
_

+ _

+

∆u
∆t

xr PI
Control

∆u
∆t

PID
Control

_

 
Fig. 4.  PI-Fuzzy and PID-Fuzzy control block diagram 

 
As one can see, first the respective value of error and the rate 

of change of error enters the fuzzy logic block. After the 
fuzzification and defuzzification process (that depends on the 
membership functions and rules) the fuzzy system will have as 
outputs the Kp, Ki and Kd adjustment gains. This gains will 
them be added to the previously static PI and PID controller 
gains. 

 

A. Fuzzy set 
The first step in the design of the fuzzy inference is the 

definition of the fuzzy set and the construction of the 
membership functions [12]. In this project, as reported in Fig. 
4, the inputs will be the error and the rate of change of error. All 
the membership functions used are presented, as well as their 
respective universe of discourse. The fuzzy set was defined as: 
NB, NM, NS, Z, PS, PM and PB that represent Negative Big, 
Negative Medium, Negative Small, Zero, Positive Small, 
Positive Medium and Positive Big, respectively. Through tests, 
Gaussian functions performed better than other forms in the 
outputs, and thus this type of curve was used on all the outputs. 
For the inputs, simple triangular and trapezoidal functions 
where used. 

 
1) PI-Fuzzy position controller 

Fig. 5 shows how the two inputs (error and rate of change of 
error) are related to the two outputs (Kp and Ki). For the input 
error, five triangular and two trapezoidal functions were used, 
all of them evenly spaced in values. Thus, the error values can 
be positive or negative in an equal manner. Figure 6 presents 
the described membership function. 
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Fig. 5.  Inputs and outputs for the position controller. 
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Fig. 6.  Membership functions for the input error (𝑒𝑒). 

 
For the second input, named rate of change of error, five 

triangular functions and two trapezoids were also used, and 
again, one can have negative and positive values in an equal 
manner. Fig. 7 shows the mentioned fuzzy input set. 
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Fig. 7.  Membership functions for the input rate of change of error (𝑒̇𝑒). 
 

Fig. 8 shows the membership functions for the Kp gain of the 
position controller. Seven Gaussian membership functions 
were used. These functions are known for achieving a certain 
degree of smoothness in the transition of the results. In this part, 
it was necessary to do empirical tests to decide what would be 
the best form of the functions that would be used, and they were 
selected due to a better performance when considering 
parametric changes in the system. 
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Fig. 8.  Membership functions for the output Kp. 

 
Fig. 9 shows the membership functions for the Ki gain of the 

position controller.  
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Fig. 9.  Membership functions for the output Ki. 

 
2) PID-Fuzzy angle controller 

For this controller, again were used as inputs the variable 
error and the rate of change of error of the angular position. The 
fuzzy sets and membership functions used were the same as 
those used for the position control. Fig. 10 presents the 
relationship between the inputs and outputs for the pendulum 
balance controller. 
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Fig. 10.  Inputs and outputs for the angle controller. 
 

Fig. 11 presents the membership functions for the Kp gain of 
the pendulum angle control loop. The same Gaussian 
membership functions were used for this output. As can be 
seen, the functions were evenly distributed and separated. 
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Fig. 11.  Membership functions for the output Kp. 

 
Fig. 12 shows the membership functions for the Ki gain of 

the pendulum angle control loop. Again, the seven Gaussian 
type functions were used. As one can see, the values of Ki gain 
are substantially smaller when compared to the Kp gain. 
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Fig. 12.  Membership functions for the output Ki. 

 
As shown in fig. 4, a PID controller was required to control 

the angular position and balance of the pendulum, and therefore 
there is a differential gain Kd. Fig. 13 shows the membership 
functions for the Kd gain of the pendulum angle control loop. 
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Fig. 13.  Membership functions for the output Kd. 

 

B. Fuzzy rules 
The fuzzy rules for the controllers were estimated based on 

the following premises: when there is a big error, the Kp gain 
must also be big, Ki and Kd will be small. When the error and 
the rate of change of error have an intermediate value, there is 
an intermediate Kp value as well as an intermediate Ki value. 
When the error is small, Kp and Ki will be proportionally small. 
Kd will depend of the error and the rate of change of error: Kd 
is small if the rate of change of error is small (to minimize 
derivative gain problems), conversely, if the rate of change of 
error is big, Kd will receive bigger values. Similar ideas can be 
found in the works of [19] and [20]. 

For all the rules here presented, an “AND” connective and 
the centroid defuzzification method were used. 

Table 2 presents the rules used for the Kp gains, showing 
every possible combination between the error and the rate of 
change of this error (its derivative in time).  

 
 
 
 
 
 

 

TABLE II 
FUZZY RULES FOR THE KP GAIN 

𝑒̇𝑒 
 

𝑒𝑒 

NB NM NS ZO PS PM PB 
NB PB PB PM PM PS ZO ZO 
NM PB PM PM PS PS ZO NS 
NS PM PM PS PS ZO NS NS 
ZO PM PS PS ZO ZO NS NM 
PS PS PS ZO ZO NS NM NM 
PM PS ZO ZO NS NS NM NB 
PB ZO ZO NS NS NM NB NB 

 
TABLE III 

FUZZY RULES FOR THE KI GAIN 

𝑒̇𝑒 
 

𝑒𝑒 

NB NM NS ZO PS PM PB 
NB NB NB NM NM NS ZO ZO 
NM NB NM NM NS NS ZO PS 
NS NM NM NS NS ZO PS PS 
ZO NM NS NS ZO ZO PS PM 
PS NS NS ZO ZO PS PM PM 
PM NS ZO ZO PS PS PM PB 
PB ZO ZO PS PS PM PB PB 

 
Table 4 presents the rules used for the Kd gain. 

 
TABLE IV 

FUZZY RULES FOR THE KD GAIN 

𝑒̇𝑒 
 

𝑒𝑒 

NB NM NS ZO PS PM PB 
NB NS PS PB PB PB PM NS 
NM NS PS PB PM PM PS ZO 
NS ZO PS PM PM PS PS ZO 
ZO ZO PS PS PS PS PS ZO 
PS ZO ZO ZO ZO ZO ZO ZO 
PM NB PS NS NS NS NS NB 
PB NB NM NM NS NS NS NB 

 

V. NUMERICAL RESULTS 
For the tests, it was considered a path that the inverted 

pendulum cart must follow while balancing the pendulum. This 
route consists of traveling 0.2 meters in a positive direction. In 
5 seconds of elapsed time, the system should then return 0.2 
meters. The pendulum starts at an angle equal to zero (perfectly 
balanced).  

 

A. Numerical results for the parameters of Table 1 
Initially, the system was tested with the parameters shown in 

Table 1. Fig.14 presents a comparison between the PID control 
and the PID-Fuzzy control for the displacement of the cart. The 
grey dotted line is the reference signal that the system needs to 
follow. 
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Fig. 14.  Cart displacement for the PID and PID-Fuzzy controllers considering 
the physical parameters presented in Table 1. 

 
Fig. 15 shows the same controllers’ comparison, now for the 

angular displacement of the pendulum rod. 
 

0 1 2 3 4 5 6 7 8 9 10
Time - [s]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Pe
nd

ul
um

 an
gl

e 
- [

ra
d]

Reference
PID
PID-Fuzzy

 
Fig. 15.  Angular displacement of the pendulum rod for the PID and PID-Fuzzy 
controllers considering the physical parameters presented in Table 1. 

 
As can be seen, the PID-fuzzy control showed a performance 

advantage when compared to the pure PID control. This was 
mostly due to the gains projected for the PID control not being 
optimal because of the natural difficulty present in the classical 
controller design for complex systems, where the fuzzy logic 
helped the control system to achieve a better result.  

 

B. Increase in the length of the pendulum rod (l=0.8m) 
To show a better influence of the fuzzy logic in the designed 

controller, tests were performed by changing the physical 
parameter of the pendulum length. All other parameters were 
maintained, as well as the gains from the PI and PID control.  

Fig.16 presents a comparison between the PID control and 
the PID-Fuzzy control for the displacement of the cart now 
considering a pendulum length of l = 0.8 meters – double of the 
value presented in Table 1 and used in the other simulations. 

0 1 2 3 4 5 6 7 8 9 10
Time - [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
ar

t p
os

iti
on

 - 
[m

]

Reference
PID
PID-Fuzzy

 
Fig. 16.  Cart displacement for the PID and PID-Fuzzy controllers considering 
l = 0.8 m. 

 
Fig. 17 shows the same comparison of controllers, now for 

the angular displacement of the pendulum rod. 
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Fig. 17.  Angular displacement of the pendulum’s rod for the PID and PID-
Fuzzy controllers considering l = 0.8 m. 

 

C. Increase in the length of the pendulum rod (l=1.2m) 
For the last test, the pendulum length has been tripled from 

its original value. This extreme change was used to demonstrate 
the adaptability of the fuzzy control designed, where without 
changing any parameters of the PI or PID control the 
performance remained acceptable and far superior to the pure 
PI and PID controls. 

Fig.18 presents a comparison between the PID control and 
the PID-Fuzzy control for the displacement of the cart, now 
considering a pendulum length of 1.2 meters. 



 
JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 8 

‘ 

DOI:   ISSN: 2318-4531 

0 1 2 3 4 5 6 7 8 9 10
Time - [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
C

ar
t p

os
iti

on
 - 

[m
]

Reference
PID
PID-Fuzzy

 
Fig. 18.  Cart displacement for the PID and PID-Fuzzy controllers considering 
l = 1.2 m. 

 
Fig. 19 shows the same comparison of controllers, now for 

the angular displacement of the pendulum rod. 
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Fig. 19.  Angular displacement of the pendulum’s rod for the PID and PID-
Fuzzy controllers considering l = 1.2 m. 

 
As mentioned, even with an extreme three-fold change in 

pendulum’s length, the PI-Fuzzy and PID-Fuzzy control was 
able to maintain the performance of the required task without 
any changes or readjustments being necessary. Thus, this type 
of controller, which combines the ease of the PID design with 
the fuzzy adaptability, can be used for physically indeterminate 
systems, or for systems that require some kind of constant 
physical changes, such as weight loading systems, vehicle 
transports, among others. 

 

VI. CONCLUSION 
This paper presented the design of a PI-Fuzzy and PID-fuzzy 

controller to control the position and balance of an inverted 
pendulum. The controller designed was compared to a classical 
PID controller, showing to be much superior in performance, 

especially considering parametric variations. Another aspect 
that can be observed is that the pure classical controllers proved 
to be challenges in terms of finding their optimal or even 
functional gains, either due to the complexity of the system or 
due to the use of multiple controllers that must work together. 
Thus, the fuzzy logic showed thought the obtained results his 
ability to improve the performance of the PI and PID controllers 
without the necessity to redesign the gains for each situation. 
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Projeto de controle PID-Fuzzy para um pêndulo invertido não 
linear 
 
 
 
Resumo — Este trabalho tem por objetivo apresentar um projeto 
PI-Fuzzy e PID-Fuzzy para o controle de posição e equilíbrio 
de um sistema do tipo pêndulo invertido. Este tipo de sistema é 
bastante conhecido pelo seu desafio de controle e suas 
similaridades e aplicações em outros sistemas, como veículos 
de transportes e robôs. Assim, sendo um sistema bastante 
famoso e importante para se utilizar como parâmetro de testes 
para controladores. As equações dinâmicas não lineares para o 
pendulo invertido foram obtidas através da formulação de 
Lagrange. Controladores adaptativos PI-Fuzzy e PID-Fuzzy 
foram projetados e implementados. Os resultados finais 
demonstraram um grande aumento de desempenho, tanto para 
o deslocamento como para a dinâmica de equilíbrio, quando 
comparados aos controladores PI e PID clássicos, 
especialmente quando em presença de variações paramétricas 
no sistema. Outra contibuição deste artigo é demonstrar como 
o sistema fuzzy proposto pode melhorar a resposta de 
controladores clássicos projetados para um sistema complexo. 
 
Palavras-chave — Projeto de Controle, Controle Fuzzy, Lógica 
Fuzzy. 
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