
JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 1

On the Applicability of Behavior Driven
Development for Automotive Software Testing at

the Functional Model Level
José H. Roquette, Simone N. Matos, Max M. D. Santos

Abstract—Model-based design [MDB] is a well know and with
a high level of maturity methodology for the design, build,
and testing of automotive embedded systems. For the tools and
technologies available, it enables to build functionalities with high
quality in which the tests need to be done to verify whether
requirements are attended in all stages from functional model to
code stage. In the early stage of the development, the controller
design might be done in a simulation environment integrated with
the physical plant that allows us to test and check out whether
requirements are attended. In addition, the model complexity can
be increased and the testing method shall be automated in order
to provide a testing coverage and consequently a high quality of
the software developed. Therefore, we present the applicability of
behavior-driven development for automotive software testing at
the functional model level in MBD. Furthermore, we demonstrate
the efficiency o four method over a small case study of power
window system which enables to be deployed in other automotive
functionalities to be controlled.

Index Terms—Model-based design, automotive software test-
ing, embedded systems, model-in-the loop, behavior driven de-
velopment and functional model.

I. INTRODUCTION

Model-based design [MDB] is a well know and with high
level of maturity methodology for develop and testing of
automotive embedded systems. For the tools and technologies
available, it enables to build functionalities with high quality in
which the tests need to be done to verify whether requirements

João Henrique Roquette - Departamento de Ciência da Computação,
Universidade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil
Chueire, 330, Jardim Carvalho, 84017-220 Ponta Grossa, PR, Brazil

Simone Nasser Matos - Departamento de Ciência da Computação, Universi-
dade Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire,
330, Jardim Carvalho, 84017-220 Ponta Grossa, PR, Brazil

Max Mauro Dias Santos - Departamento de Eletrônica, Universidade
Tecnológica Federal do Paraná, Rua Doutor Washington Subtil Chueire, 330,
Jardim Carvalho, 84017-220 Ponta Grossa, PR, Brazil

are attended in all stages since functional model to code stage.
As know as, we have a big dilemma in how to define the
case tests in the first stage of MBD so that can be deploy
in the following stages. In addition to, the testing method
shall be automated in order to provide a testing coverage
and consequently a high quality of the software developed.
Therefore, we present the applicability of behavior driven
development for automotive software testing at the functional
model level in MBD. Furthermore, we demonstrate the effi-
ciency o four method over a small case study of power window
system which enables to be deployed in other automotive
functionalities to be controlled.

This work focuses on tests performed at the functional
model level proposing a new method of how MIL tests should
be performed. After analyzing the project on power windows
systems [1], it was verified that MIL tests are not performed
in the best possible way, because they are done manually and
in an empirical way, that is, based on the knowledge of the
team involved in the project.

The proposed method aims to detect software failures even
at the model level and to identify the largest number of
possible test cases using techniques already applied within
software engineering.

This paper is organized as follows: Section 2 presents the
discussion of the problem of how the tests in automotive
software development are realized after the analysis of an
automatic window design for embedded systems. Section 3
describes the concepts used to elaborate a possible solution
to the problem addressed in Section 2. Section 4 proposes a
method that can be adopted for testing in embedded systems.
Section 5 performs a case study applying the proposed method,
in section 6 an analysis is made comparing its results with
another method in the literature. Finally, Section 7 reports the

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 2

Fig. 1. The workflow of V-model for automotive embedded systems.

conclusions of this work.

II. V-MODEL AND MODEL-BASED DESIGN FOR
AUTOMOTIVE EMBEDDED SYSTEMS

The automotive industry uses the V-model for automotive
software development [2]. This model consists of two phases:
development and testing. The stages of each of the phases are
illustrated in Figure 1, where the stages of the development
phase are on the left and the right of testing.

The V-model consists of nine stages, Requirements Analysis
obtains the understanding of the problem, verifies what should
be done in the project and the business values for each
functionality, as well as its acceptance criteria. The artifact
generated in this stage is used in Validation Test that verifies
if the system is behaving as the client requested [3]. In the
Functional Specifications stage, a document with the functions
that a system or component is to perform is created [4], assists
in the verification test stage that evaluates the results against
the pre-specified requirements. The High Level Design stage
defines the high level concepts that guide the implementation
of Low Level Design and the design [3], this stage works with
the System Test that tests the system as a whole [4].

The stages described above are system level. Regarding the
level of components, there is the Low Level Design stage
which is a document that contains step-by-step detailed how
the system should act and used to perform Unit Test, which
performs tests of concentrated form in each component of the
system [4].

To optimize the development process of the V model, agile
test methodologies can be applied, one of them being Model
Based Design. It makes use of simultaneous engineering
with the implementation of an agile model together with
incremental testing [5]. This allows the development team to
incrementally perform tests and requirements are discovered
throughout development, iterative is greatest within develop-
ment and assists in the validation of model-level requirements
[5].

Communicating the stages of development with the test
steps allows the project to be run while the software is under
construction. In automotive systems, five types of tests are
performed:

Model-In-The-Loop (MIL): used to find bugs within the
logic of the controller, makes use of the model and the
controller to perform the simulation [6];

Software-in-The-Loop (SIL) The model-in-the-loop test,
which uses the previous-stage model to generate the code,
performs the algorithm and logic test in a real-time virtual
environment [7].

Processor-In-The-Loop (PIL): the generated code is tested
and loaded into the processor on the system it will run.
Different machines are used to perform the tests and have
the objective of finding more complex errors such as memory
usage, division by zero, etc. [6].

Hardware-In-The-Loop (HIL): one of the last tests to be
performed on the software, it is checked if the system contin-
ues to meet the requirements of the client. It also aims to test
whether the built-in software interacts properly with the target
hardware by measuring its performance [8].

Vehicle-In-The-Loop (VIL): in this test the vehicle is placed
in an open or blocked traffic environment, in an environment
where the system functions tests can be performed in real
situations, its greatest advantages are in safety tests, such as
emergency brake [9].

Rapid Control Prototyping (RCP): In RCP applications, a
plant controller is implemented using a real-time simulator and
is connected to a physical plant. RCP offers many advantages
over implementing in actual controller prototype. A controller
prototype developed using a real-time simulator is more flex-
ible, faster to implement and easier to debug. The controller
prototype can be tuned on the fly or completely modified. In
addition, since every internal controller state is available, an
RCP can be debugged faster without having to take its cover
off. See in Fig.1 d).

III. THE TRADITIONAL METHOD OF FUNCTIONAL TESTING

The MIL can be defined as a basic simulation where tests
are carried out in the initial phase of the project in order to
analyze the controller model together with the model of the
system plant through a simulation [10].

Generally the controller is implemented in tools such as
Matlab / Simulink [11] and the model plant is built in Simulink
where there is a connection between the controller and the
plant [12].

By means of these tools it is possible to assign signal
inputs, which correspond to the test cases that must be tested
by the test engineers. These test cases serve as inputs for
the execution of the simulation that generates the outputs,
called test report, as shown in Figure 3. The test reports must
be analyzed to verify if the simulation is being executed as
expected, if the output does not does not provide an expected
value, a problem with the environment or even the model
syntax has probably occurred [10].

Manual testing can bring some problems to the project
such as: the test team needs experience and information on
the software and hardware that will be tested [13]. There is
also the possibility of not identifying all the test cases of the
project, taking more time to find all the bugs in the system.
This causes financial damage to the project. In addition,

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 3

Fig. 2. Application categories of MIL, SIL, PIL, HIL and RCP.

presenting complex documentation can increase the difficulty
of understanding the problem and cause misunderstandings
within the development team which increases the chance of
development errors. If you consider complex functions, it is
often not possible to perform software testing manually.

IV. RELATED APPROACH FOR FUNCTIONAL TESTING

In this section we elaborated the theoretical concepts that
were used to elaborate the method proposed in this article.

Fig. 3. The process of model in the loop testing.

Fig. 4. Finite State Machine.

A. Finite State Machine (FSM)

A finite state machine can be defined mathematically in a
tuple with six elements (S, S1, I, O, T, G), where S represents
the possible machine states S = {S1, S2, ... Sn}; S1 is the
initial state, always S1 ∈ S; I and O represent the input and
output values of the alphabet respectively I = {I0, I2, ..., In}
and O = {O0, O2, ..., On}, each value of Ij (Oj) are functions
which have a certain time to run within the state machine,
which may vary according to their function. T within the tuple
represents the triggering of events within the state machine that
is generated by a signal that calls a transition rule represented
by the letter G. Each transition rule has its structure that can
be defined by a tuple, defined as follows θj = {Ssj, Sdj, ej,
gj, aj, pj} where Ssj is the current state in which the state
machine is located, Sdj is the destination state, and belongs
to the T value of the tuple, which represents the activation of
a gj is the guarding condition for this transition to take place,
already aj is the action itself that occurred at that moment and
finally the priority of that transaction described in the tuple by
pj, in the lower its value its higher its priority over the others
transactions [14]. Figure 4 illustrates a state machine and its
behavior.

B. Basic Path Test(White-Box Test)

In the Basic Path Test the tester uses a logical complexity
of a project and this measure defines a set of execution paths.
Test cases created to practice basic set will surely execute all
instructions in a program at least once [15].

This type of test works as a flow graph, which will represent
traversing the flow of logical control, thus having all the

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 4

Fig. 5. . Structure of a flow graph [15]

conditions of a code. Figure 5 [15] shows an example of the
structure of a flow graph.

In a flow graph, each circle represents a node that means a
procedural command, the arrows represent the edges that show
the flow that the graph must follow, having a flow graph of
an algorithm, we can analyze all the independent paths [15].

An independent path is any path through the code that
introduces a set of processing commands or a new condition,
an independent path must include at least one edge other than
other paths already defined.

Having the paths, it is possible to construct the test cases
that execute such commands covering all possible directions
of the system.

C. Behavior Driven Development (BDD)

One practice of software engineering is to help teams
build and deliver a program with higher quality and with
less time. This practice uses Test-Driven Development (TDD)
and Domain-Driven Design (DDD), but its main feature is a
common language for scenario creation, facilitating commu-
nication among project members [16].

In BDD it is common to begin by identifying what the
program objectives are and to think what features the system
can have to achieve those goals. In collaboration with the user
scenarios are developed for these functionalities and are auto-
mated in the form of executable specifications which are used
for development and documentation. Code-level BDD can help
developers write high-quality, best-tested, documented, and
easy-to-maintain code.

Scenarios are simple frameworks that clearly show what
the purpose of functionality is that can become automated
testing. Each has a title that describes what it represents and
has common vocabulary expressions such as: Given, When,
Then. Each expression has a meaning: Given describes the
precondition and prepares the test; When describes the test
action; and Then describes what is expected from the test.
Table 1 presents the structure of a BDD scenario.

TABLE I
STRUCTURE OF A SCENARIO IN BDD

Title: <title of the scenario>
Given <initial context>
When <an action or event>
Then <expected result>

Scenarios in the BDD format can be extended in any of
the steps using ”and” and its synonym ”but”, so in certain

Fig. 6. Flowchart method.

cases it becomes easier to understand about such a case. These
scenarios are used to automate the writing of tests and serve as
documentation for the project specifying how a system should
behave.

This test development methodology can bring some benefits
to the project, because with its use it can be perceived a
reduction of costs and time, due to the increase of focus in
functionalities that must be programmed. With reduced time
spent maintaining code, this practice makes it possible to make
changes to the code without causing damage to the project
more easily [16].

V. THE METHOD PROPOSED TO DEFINE THE FUNCTIONAL
TESTING

The proposed method for carrying out automotive software
testing using the concepts of Road Testing and the scenarios
in BDD format is shown in Figure 6.

The method developed is structured into the following eight
steps as shown in Table II

TABLE II
STRUCTURE OF A SCENARIO IN BDD

1. Perform the requirements analysis to obtain an understanding of the problem
in question.
2. Create in appropriate tools, the model of the system controller and a state
machine that meets the necessary requirements.
3. Realize the analysis of the model and from it build a behavioral flow graph
of that state machine.
4. Analyze all possible independent paths, which can be both manual and
automated. With this we will get the knowledge of all the test cases that must
be programmed.
5. Choose a path and interpret it.
6. Write the path chosen in BDD scenario format specifying the initial context
of that event, the action that will occur on that path, and the expected output
of that test case.
7. Implement scenarios on test tools following their conditions.
8. Test the generated scenarios and analyze if they are correct. If they are
not returning to step 6 and rewrite the scenario. If the scenario is meeting
expectations, return to step 5 and consider if there are more paths. If they do
not have more paths, this means that all test cases have been implemented
and tested.

VI. CASE STUDY

In this section the proposed method was applied in the
Power Windows System project [1]. In this application we
have already defined the steps of requirements analysis and
the development of the controller. Therefore, the explanation
of the method starts in Step 3, defining the flow graph of the

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 5

Fig. 7. The graph flow of the controller in operation.

controller after conducting a controller analysis, the following
flow graph was elaborated in Figure 7.

For the construction of the flow graph, in Figure 6, we
abstract the actuators of the system relating to their variables:
the ”Driver” actuator responsible for the variables ”Driver Up”
and ”Driver Down”, ”Passenger” can trigger ”Passenger Up”
and ”Passenger Down” and lastly ”Nobody” that controls the
”Obstacle” and ”Alarm” variables.

We check which events can occur in the system. The
following have been identified: ”sending a signal for more than
one second to open or close the window”, ”sending a signal
for less than one second to open or closing the window”, ”the
automatic glass has encountered an obstacle”, ”Interruption in
glass handling” and ”the car alarm has been triggered”

The graph in Figure 6 has its initial state in ”A”, the glass
is stopped. The first ”if” defines whether the battery is on or
not, if it is off, it will go to the ”B” state and end process
in ”L”. If it is on it will go to state C, whose ”if” indicates
which driver has or has not sent a signal. If yes, proceed to
”D”, otherwise to ”E”, in ”E” you have the same situation, but
now we check the passenger’s signal. If he sends the signal, it
goes to the ”G” or ”H” state, if not to ”F”, which means that
nobody sent a signal then going to the ”L” state and finish the
process.

In states ”B” and ”D”, one can move to the ”G” and ”H”
states, where they respectively represent the up and down
movement of the glass. Both states can have the same desti-
nation ”I” and ”K”. The second represents that the signal sent
was greater than 1 seconds, being moved up to the duration
of its signal and stopping (L). As for the ”I” state, this means
that its signal lasted less than 1 second and should continue
its movement (J), node ”M” represents that the system did not
find any interruption or obstacle, ”N” means interruptions that
can occur, being they up and down. The ”O” node means the
encounter of an obstacle through the window and finally the
node relating to ”Alarm”.

With the flow graph constructed, path analysis was per-
formed. In this step, all possible independent paths were found
using a tool [17] which assigns a graph as input and as output
all possible independent paths are obtained. The tool used has
limitations, it does not accept loops within the graph. The

solution to this problem was to find and remove all existing
loops, for this was created new nodes that supplied such a
restriction.

We identified 24 different paths, that is, is possible found
32 test cases that should be tested at the model level. The
paths were divided into 3 categories, ”Neutral”, in which no
one sends a signal, ”Driver”, are the paths where the driver
sends the first signal and ”Passenger” represent the ways in
which the passenger sends the first signal, but after analyse
this test cases we noticed that there were redundant cases, In
Table III we can see how the test cases were classified.

TABLE III
ANALYSIS OF THE PATHS FOUND

Scenario Quantity
Impossibles Situations 2

Referring to Driver 13
Referring to Passenger 13

Neutral 4
Total 32

The next step was to choose a path and write it in the
BDD scenario format. To illustrate, this article shows the BDD
scenario for the path A-B-E-G-H-J-OBJ-L which represents
that the passenger sent a signal up and found an object, as can
be seen in Table IV. However, 14 scenarios were identified
that were written in the BDD format, and from them were
generated 48 test cases.

TABLE IV
STRUCTURE OF A SCENARIO IN BDD

time = 10;
passenger up = 0;
passenger down = 0;
driver up = 0;
driver down = 0;
alarm = 0;
accessory = 0;
run = 0;
crank = 0;
battery = 1;
obstacle = 0;

Title: Passenger sent signal up and found an object
Given the passenger window is open
When $variable1 is fired in the interval %time1 to %time2 seconds
And find a $variable2 during the interval %time3 to %time4 seconds
Then the glass should find the obstacle and descend approximately 10 cm

∥variable1 | variable2| time1| time2| time3| time4|
|passenger up| obstacle | 3 | 5 | 6 | 7 |
|passenger up| obstacle | 3 | 3.5 | 6 | 8 |

In this test case, we declare the title ”Passenger sent signal
up and found an object”, in this work we show the execution
of the first line of values of the table described below under the
scenario, whose variable1 and variable2 represent respectively
the sign of the ”passenger up” and the obstacle, and the time
values in which they were triggered are assigned the variables
time1, time2, time3 and time4.

With the written scenarios, we can implement the scenario
using tools like Simulink and carry out the simulation of the
test cases and analyze its output comparing with the Then step

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 6

Fig. 8. The input signals of test case.

Fig. 9. . The output signals of test case.

of the scenario. We implemented the scenario within the tool,
as can be seen in Figure 8.

After completing its implementation, when analyzing the
output of the implemented scenario it can be verified that

the scenario is correct, because when comparing the output
generated by the tool with the stage Then of the scenario
it is observed that in the first Graph of Figure 9, that the
electric window identifies an object in the time of 6 seconds
and moves down 10 cm, considering the scenario condition
and requirement 6.

Therefore, this test case should receive the approved status,
so we must go back to the Path and Analysis step, so that
another path can be tested, until there are no more paths to
execute.

In Table V, we describe all the results of the 48 test
cases performed, following their ID, which group they belong
to, what requirements they cover, and whether the test was
approved or not. The ”OK” means that the test was approved
and meets the conditions set forth in the scenario and ”FAIL”
means that the development team should be reported, so that
the error is corrected and tested again.

TABLE V
ANALYSIS OF THE PATHS FOUND

Test Case id Group Requirements Test Report
#0, #4 Driver 1, 2, 3, 10 OK
#1, #5 Driver 1, 2, 3 5, 10 OK
#2, #3 Driver 2, 6, 7, 10 OK
#6, #7 Driver 2, 5, 10 OK
#8, #9 Driver 2, 5, 10 FAIL

#10 , #18 Driver 2, 5, 10 OK
#19 Driver 2, 5, 10 FAIL

#20, #21 Driver 2, 5, 10 OK
#22 Passenger 1, 2, 3, 10 FAIL
#23 Passenger 1, 2, 3, 5, 10 OK

#24, #25 Passenger 2, 6, 7, 10 OK
#26 Passenger 1, 2, 3, 10 FAIL
#27 Passenger 1, 2, 3, 5, 10 FAIL

#28, #29 Passenger 2, 5, 10 FAIL
#30, #31 Passenger 2, 5, 10 OK

#32 , # 35 Passenger 2, 5, 8, 10 OK
36, # 37 Passenger 2, 5, 10 OK

#38 Passenger 2, 5, 10 FAIL
#39, #43 Passenger 2, 5, 10 OK
#44, #45 Neutral 9, 10 OK
#46, #47 Neutral 10 OK

When analyzing Table V, it is observed that the majority of
the implemented scenarios were approved in their test, finding
9 cases in which they were failed. The number representing
the number of tests implemented and approved is 81% and
19% of tests were disapproved.

VII. COMPARATIVE ANALYSIS WITH RELATED WORK

After the conclusion of the case study, an analysis of the
method performed in the article about the automotive window
system [1] and the one proposed in this work was performed.

An important fact to note is the number of test cases found
in each of the studies, in the first one that has the identification
of the test cases in an empirical way and manually only four
test situations were found, while with the method proposed
in this work where the search for test cases happened in
an automated way and using software engineering concepts
attending 48 test cases, in Table VI we can see the comparison
of the works.

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 7

TABLE VI
ANALYSIS OF THE PATHS FOUND

Scenario Proposed Approach Santos (2015)
Number of test cases identified 48 4
Number of approved test casesr 39 4

Number of failed test cases 9 0
Number of requirements met 9 10

Comparing the results of the work, it is observable that the
proposed approach identified a larger number of test cases
compared to that used by Santos et al (2015) in his work. We
identified 48 test cases that should be performed, while the
article that was used for comparison found only 4 cases.

Another important factor is the number of failed tests, while
this work identified 9 test cases with errors, the related work
did not present any failed test, which may result in future
problems for the developing system, since errors were found
in the controller. It is important to note that even 9 cases were
disapproved, 38 test cases were verified and validated. We
conclude that with the number of cases found, the reliability
of the designed system can be increased.

The tests performed by Santos et al (2015) covered all
the requirements encountered, whereas the approach of this
work covered 9 of the 10 requirements identified, requirement
number 4, ”The control system must operate between a voltage
of 12.5V and 14, 5V ”, it was not possible to be answered, this
being due to a simulation we could not, in this work, verify
the voltage in which the system was working. For this reason,
we were unable to validate all the requirements at this stage
of testing.

In addition, as another criterion for comparing the documen-
tation, in the original work the test cases are documented in
a complex way, presented greater difficulty of understanding
with what should be implemented by the development team,
while the use of scenarios in BDD is efficient when describing
a clear and objective functionality, avoiding misunderstandings
about what should be programmed in this test case, besides the
scenarios written in BDD format can be used in other stages
of the test procedure as validation of the features since we
have specified in it must the behavior of the same.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a proposal for a new method to test
automotive software at the functional model level in order to
optimize this process. He also reports a work done in the area
showing that the tests performed on him were not performed in
the best way, since in this work in automatic electric window
identified only four test cases while with the proposed method
were identified 14 test cases that should be performed before
progress to the next stage of development.

With the implementation of this test method, it was possible
to identify nine errors during the initial phase of the project,
which could still benefit users, such as reducing time and cost,
reducing errors in future stages of the project.

The proposed method has better documentation on test
cases, since the scenarios written in BDD format serve as

a comprehensive documentation of what is happening in that
process, so it can also be used to verify that test reports match
what is waiting for this functionality. Because the scenarios
are written in natural language scenarios and with simple
language, it helps in removing misunderstandings within the
team and facilitates the client’s understanding of what is being
implemented in that functionality.

As a future work, we propose that the automation of the
process of implementing the scenarios in the BDD be per-
formed for a tool that is capable of performing the simulation,
thus being able to automate another stage of the automotive
software testing process.

REFERENCES

[1] F. R. F. M. M. D. Santos, J. H. Neme, “Rapid contro prototyping
automotive software in power windowns systems.”

[2] J. D. P. D. M. J. A. T. Hermans, P. Ramaekers, “Incorporation of autosar
in an embedded systems development process: a case study.”

[3] ISO, “Iso 24765: Systems and software engineering —vocabulary,”
2010.

[4] R. S. Yadav, “Improvement in the v-model.”
[5] V. Since, “Implementing a model-based design and test workflow,” 2012.
[6] A. K. S. M.-M. P. T. Tulpule, A. Rezaeian, “Model based design (mbd)

and hardware in the loop (hil) validation: Curriculum development.”
[7] M. S. A. Popp, “Real-time co-simulation platform for electromechanical

vehicle applications.”
[8] B. B. H. S. W.Chaaban, M. Schwarz and J. B. Since, “A hil test

bench for verification and validation purposes of model-based developed
applications using simulink® and opc da technology,” 2012.

[9] G. F. T. Bock, M. Maurer, “Validation of the vehicle in the loop (vil) –
a milestone for the simulation of driver assistance systems.”

[10] M. H. H. Shokry, “Model-based verification of embedded software.”
[11] “Simulink, simulation and model-based design,” 2018. [Online].

Available: http://www.mathworks.com/products/simulink/?BB=1
[12] S. D. D. A. Vidanapathirana, “Model in the loop testing of complex

reactive systems.”
[13] Y. C. S. Jang, H. Kim, “Manual specific testing and quality evaluation

for embedded software.”
[14] M. Natale and H. Zeng, “Task implementation of synchronous finite

state machines,” 2012.
[15] R. S. Pressman, Ed., Software Engineering: A Practitioner’s Approach.

New York: McGraw-Hill Science, 2014.
[16] J. F. Smart, Ed., BDD in Action. New York: Manning Publication,

2015.
[17] C. Felchar and J. H. Roquette,

“alldagpaths,′′ 2019.[Online].Available : https :
//gist.github.com/htmk/

Received: 14 April 2021;
Accepted: 18 March 2022;
Published: 21 March 2022;

© 2022 by the authors. Submitted for
possible open access publication under
the terms and conditions of the Creative

Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

JOURNAL OF APPLIED INSTRUMENTATION AND CONTROL 8

Aplicação do Desenvolvimento Dirigido a
Comportamento para Testes de Software

Automotivo em Nı́vel de Modelo Funcional

Resumo: —O Model-based design [MDB] é uma metodologia
bem conhecida e com um alto nı́vel de maturidade para o projeto,
construção e teste de sistemas automotivos embarcados. Para
as ferramentas e tecnologias disponı́veis, ele permite construir
funcionalidades com alta qualidade nas quais os testes precisam
ser feitos para verificar se os requisitos são atendidos em todas as
etapas desde o modelo funcional até a etapa de código. No estágio
inicial do desenvolvimento, o projeto do controlador pode ser
feito em um ambiente de simulação integrado com a planta fı́sica
que nos permite testar e verificar se os requisitos são atendidos.
Além disso, a complexidade do modelo pode ser aumentada e o
método de teste deve ser automatizado a fim de fornecer uma
cobertura de teste e, conseqüentemente, uma alta qualidade do
software desenvolvido. Portanto, apresentamos a aplicabilidade
do desenvolvimento orientado ao comportamento para testes de
software automotivo no nı́vel do modelo funcional em MBD. Além
disso, demonstramos a eficiência do método de quatro sobre
um pequeno estudo de caso de sistema de janelas de energia
que permite que seja implantado em outras funcionalidades
automotivas a serem controladas.

Palavras-chave: —Model-based design, testes de software au-
tomotivo, sistemas incorporados, model-in-the loop, desenvolvi-
mento orientado ao comportamento e modelo funcional.

DOI: 10.3895/jaic.v10n1.11313 (a ajustar) ISSN: 2318-4531

