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Resumo- De acordo com a suposição da presença de uma variedade invariante
de atração com respeito ao qual o equiĺıbrio é assintóticamente estável, é com-
provado a estabilidade assintótica de um equiĺıbrio de um sistema não linear.
Este resultado é aplicado ao problema de estabiliçabilidade de um sistema de
controle.
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THE STABILITY IN THE PRESENCE OF AN INVARIANT
MANIFOLD AND THEIR APPLICATION TO

STABILIZABILITY OF NON LINEAR CONTROL SYSTEMS
Abstract- Under the assumption of the presence of an attracting invariant
manifold with respect to which the equilibrium is asymptotically stable, is
proved the asymptotic stability of an equilibrium of a nonlinear system. This
result is applied to the problem of stabilizability of a control system.
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1. INTRODUCTION

In many problems of engineering which have been stud-
ied in recent years, a crucial aspect is to simplify sta-
bility analysis by the use of invariant manifolds. This
problem is intimately related to the decomposition of
a given system into subsystems. It obviously consist of
two problems: 1. To establish the existence of invariant
manifolds and to find them; 2. To formulate the con-
dition under which the system as a whole is stable on
the basis of the stability behavior of the subsystems.

The first problem is a difficult one in general case,
involving partial differential equations, and only rela-
tively special cases have been treated so far (see, for
instance, [10]).

As far as the second point is concerned, mainly two
methods have been used in previous contributions: On
the on hand, there is the centre manifold theory which
has the limitation of depending strongly on the first-
order approximation of the system. On the other hand,
Lyapunov function techniques have been used in the
case of systems in triangular form (cf. M. Vidyasagar
[14]).

In the present paper, we solved the second problem

for a general nonlinear system with an invariant man-
ifold. The central result is that if the reduction of the
system to the invariant manifold itself is a stable at-
tractor, then the system as a whole is asymptotically
stable. We formulate our results for systems in Rn,
but the method used is applicable equally to infinite-
dimensional systems. This aspect will be presented in
a future paper in which also the question of the size of
the region of attraction will be treated.

The problem treated here plays a particularly signif-
icant role in control theory (see, for instance, [1-4] and
[6-9]) and the theory of interconnected systems (large
scaled systems), (e.g., [15]). The application considered
in this paper is to the problem of stabilization of nonlin-
ear systems. The methods used are of a kind that allows
their extension beyond the scop of finite-dimensional
systems and theorems of a strictly local nature, and
they do not depend on any linearity assumptions.

For the sake of simplicity of presentation, we for-
mulate our results in terms of time-invariant systems;
their extension to time-varying systems is just a tech-
nical matter.

For the basic theory of Lyapunov stability in the form
in which it is used here, we recommend to the reader
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to consult the book [11].

2. NOTATIONS AND DEFINITIONS

Let | · | be a norm in Rn. The open ball of center x and
radius r and the other for a set A ⊂ Rn will be denoted
by

B(x, r) := {y ∈ Rn | |y − x| < r};
B(A, r) := ∪{B(x, r) | x ∈ A}, (A ⊂ Rn),

respectively.
Consider the system

ẋ = f(x) (1)

where x ∈ Rn and f satisfies a local Lipschitz condi-
tion. We will use the notation x(t, x0) for the solution
of (1) with initial condition (0, x0) = x0. We denoted
by γ+(x) the positive semiorbit with initial point x; i.e.,
γ+(x) = {y ∈ Rn | ∃t ≥ 0 such that x(t, x) = y}.
Analogously for a set A ⊂ Rn, γ+(A) =

⋃{γ+(x) | x ∈
A}.

Definition 0.1. A set S ⊂ Rn is said to be an invariant
set for the system (1) if γ+(S) ⊂ S.

Given the open set U ⊂ Rn, by the restricted positive
semiorbit with initial point x, γ+

U (x) we mean the set
{x(t, x) | t ∈ Ix}, where Ix denotes the maximal interval
starting at t = 0 such that x(t, x) ∈ U, for all t ∈ Ix.

Definition 0.2. The set S ⊂ Rn is a U−invariant set
if U∩S 6= ∅ and γ+

U (S∩U) ⊂ S (i.e., solutions starting
in S ∩ U do not leave S while remaining in U).

Definition 0.3. The U−invariant set S is uniformly
U−stable if for every ε > 0 there exists δ > 0 such that

x ∈ U ∩B(S, δ)

implies

γ+
U (x) ⊂ B(S, ε) (2)

Definition 0.4. The U−invariant set S is uniformly
U−attracting if every positive semiorbit contained in U
tends to S; i.e. for every x ∈ U such that Ix = [0,∞),

lim
t→∞

d(x(t, x), S) = 0

holds, where d is the distance function (d(y, S)) =
inf{|y − z| : z ∈ S}).

3. MAIN RESULTS

We will consider, the system (1) given in the form

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2),

(3)

where x1 ∈ Rm, x2 ∈ Rn−m, x = (x1, x2) and f =
(f1, f2). It will be assumed that there exists an invariant

set S which is an m− dimensional manifold defined by
smooth function h :

S : x2 = h(x1). (4)

The invariance of S implies x2(t, x
0) = h(x1(t, x

0)) if
x0 satisfies x0

2 = h(x0
1) (see Definition 0.1). Moreover,

the invariance of S implies that h satisfies the partial
differential equation

dh · f1(x1, h(x1)) = f2(x1, h(x1)), (5)

where dh is the jacobian matrix.

We observe that the restriction of system (3) to the
invariant manifold S is given by the m−dimensional
system

ẋ1 = f1(x1, h(x1)), (6)

Here we are using x1 as coordinate on S (by assigning
to the point (x1, h(x1)), x1 as its coordinate). If we
suppose f(0) = 0 and h(0) = 0, then 0 ∈ Rn is an
equilibrium point of (3) which is contained in S, and
x1 = 0 is an equilibrium point of (6).

We have the following results:

Theorem 0.5. Let f, h be as specified above and let U
be an open neighborhood of x = 0. We assume that S
is uniformly U−stable and x1 = 0 is an asymptotically
stable equilibrium point of (6). Then x = 0 is a stable
equilibrium point of (3).

Theorem 0.6. If the hypotheses of Theorem 0.5 are
satisfied, and in addition S U−attracting, then x = 0
is an asymptotically stable equilibrium point of (3).

The proofs of the theorems 0.5 and 0.6 had been
outlined in the context of locally compact metric spaces
(containing Rn as a special case) by the second author
([12],[13]) the next corollary was stated in [12] (for a
proof using Lyapunov functions see Vidyasagar [14]).

Consider the system

ẋ1 = f1(x1)
ẋ2 = f2(x1, x2).

(7)

It is a particular case of (3) where the first equation
is independent of x2.

Corollary 0.7. The point x = 0 is an asymptotically
stable equilibrium point of (7) if only if x1 = 0 and
x2 = 0 are asymptotically stable equilibrium points of

ẋ1 = f1(x1) (8)

and

ẋ2 = f2(0, x2) (9)

respectively.

The following example shows that this result cannot
be extended along lines one might expect in analogy
with the behavior of linear systems.
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Example 0.8. Consider the two-dimensional systems

ẋ1 = (−x3
1 + x2)x

2
1

ẋ2 = (2x3
1 − x2)x

2
2,

(10)

which has {(x1, 0) | x1 ∈ R} and {(0, x2) | x2 ∈ R}
as invariant manifolds. The origin of (10) is asymp-
totically stable with respect to each of these invariant
sets, but it is nevertheless unstable. The instability of
the origin can be shown using Persidski’s theory of sec-
tors. The two regions bounded by the curves x2 = 2x3

1

and x2 = x3
1 and containing the coordinate axes in their

interior, are expellers (see [11]). The configuration of
the system is shown in Figure 1.

x ’ = (y − x3) x2  
y ’ = (2 x3 − y) y2
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In general, the attracting condition of the invariant
manifold S is difficult to show, unless one finds an ap-
propiated Lyapunov function. The following sufficient
condition is rather restrictive but easy to verify.

Theorem 0.9. Let system (3) with the invariant man-
ifold S = {(x1, x2) | x2 = h(x1)} be given. Let U be an
open neighborhood of the equilibrium point x = 0. If for
all (x1, x2) ∈ U \ S the condition

(x2 − h(x1)) ◦ (f2(x1, x2))− dh ◦ f1(x1, x2) < 0 (11)

is satisfied then S is U−attracting.

Proof. Let (y1, y2) be a solution of (3) in the form
(7)-(8) the positive semiorbit of which is contained in
U. Then it follows from (11) using the definition of y2

and the equations (7)-(8), that

d

dt
|y2(t)

2| = 2y2(t) ◦ ˙y2(t) = 2y2(t)g2(y1(t), y2(t)) < 0.

(12)

This inequality yields the attracting property in
question using the usual Lyapunov type argument (|y2|2
being positive definite with respect to Y ).

4.APPLICATIONS TO CONTROL

Now we are going to present several applications of The-
orem 0.6 to the problems of the stabilization of nonlin-
ear systems by smooth state-feedback.

Consider a control system which is linear with respect
to control,

ẋ = f(x) + g(x) · u (13)

where x ∈ Rn, u ∈ Rm, f and g are smooth functions
which are an n−vector and n×m−matrix, respectively,
and f(0) = 0.

Definition 0.10. The control system (13) is said to be
stabilizable if there exists a smooth function u∗ : Rn →
Rm with u∗(0) = 0 which satisfies the condition that the
closed-loop system

ẋ = f(x) + g(x) · u∗(x) (14)

has the origin as a locally asymptotically equilibrium
point.

a. Triangular Systems
Systems (13) is a triangular system if it can be writ-

ten in the form

ẋ1 = f1(x1) + g1(x1) · u1

ẋ2 = f2(x1, x2) + g2(x1, x2) · u2

............................................................
ẋk = fk(x1, x2, ..., xk) + gk(x1, x2, ..., xk) · uk

(15)

where x1 ∈ R1, u1 ∈ Rm1 and
∑k

i=1 ni = n and∑k
i=1 mi = n
The next corollary is a direct consequence of Corol-

lary 0.7 (see [14]).

Corollary 0.11. The system (15) is stabilizable if only
if each one of the systems

ẋi = f1(0, ..., 0, xi) + gi(0, ..., 0, xi) · ui

is stabilizable.

b. Zero-dynamics
Let system (13) with an output function

z = c(x) (16)

where z ∈ Rp and c(0) = 0, be given.
Isidori and Moog [7] introduce the concept of zero-

dynamics as the internal dynamical behavior associated
with the output z(t) = 0.

In a more formal way one defines.

Definition 0.12. [7] If there is a manifold M passing
through x = 0, with the properties

i) for all x ∈ M, c(x) = 0 (i.e, M ⊂ c−1(0)),

ii) for all x ∈ M, there is a u ∈ Rm such that the
vector f(x) + g(x) · u is tangent to M,

iii) M is maximal with respect to i), ii), then it will be
called a zero-dynamics manifold.
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Definition 0.13. If a zero dynamics manifold exists
and there is a smooth state-feedback u∗(x) defined for
all x ∈ M, satisfying condition ii), we will call

f∗(x) = f(x) + g(x) · u∗(x) (17)

a zero-dynamics vector field.

In the paper [7] the zero dynamics vector field was
introduced for the case that the zero-feedback u∗ is
unique. The motive was to extend to nonlinear systems
the dynamical interpretation of the zeros of invertible
multivariable linear systems.

We can observe that condition ii) implies the exis-
tence of a control system defined on M, which is the
restriction to M of the system (13).

The question of stabilization of (13) using the zero-
dynamics concepts and Theorem 0.6, can be stated in
two different forms:

1. If the restricted control system defined on M is sta-
bilizable by u∗(x), is it possible to find a smooth
extension to a neighborhood of x = 0, of the
function u∗, such that the zero-dynamics manifold
turns out to be a stable attracting set of the closed-
loop system ?

2. If we have a feedback control function u∗(x) such
that the zero-dynamics manifold M is a stable at-
tracting set for the closed-loop system, is z = 0
an asymptotically stable equilibrium point of the
restriction of the system to M?

These problems were solved by Byrnes and Isidori [4]
for systems which have the same number m of imput
and output components. We can rewrite their results
using Theorem 0.6 in the following form, in which the
condition on the linear part of the zero-dynamics vector
field no longer appears:

Theorem 0.14. If the m × m matrix dc(x) · g(x) is
nonsingular at x = 0, then there exist a unique zero-
dynamics manifold M and a unique state-feedback u∗,
such that M is a stable attracting manifold of the closed-
loop system (14).

Theorem 0.15. We assume the existence of a zero-
dynamics manifold which has only one zero-dynamics
vector field defined on it. Then, if x = 0 is an asymp-
totically stable equilibrium point of the zero-dynamics
vector field, the system (13) is locally stabilizable.

Theorems 0.14 and 0.15 yield the following corollary

Corollary 0.16. If the m × m matrix dc(x) · g(x) is
nonsingular at x = 0, then the systems (13) is locally
stabilizable if x = 0 is an asymptotically equilibrium
point of the zero-dynamics vector field.
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