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Resumo- De acordo com a suposicao da presenca de uma variedade invariante
de atracao com respeito ao qual o equilibrio é assintéticamente estavel, é com-
provado a estabilidade assintética de um equilibrio de um sistema nao linear.
Este resultado é aplicado ao problema de estabiligabilidade de um sistema de
controle.
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THE STABILITY IN THE PRESENCE OF AN INVARIANT
MANIFOLD AND THEIR APPLICATION TO
STABILIZABILITY OF NON LINEAR CONTROL SYSTEMS

Abstract- Under the assumption of the presence of an attracting invariant
manifold with respect to which the equilibrium is asymptotically stable, is
proved the asymptotic stability of an equilibrium of a nonlinear system. This

Variedade invariante, estabilicabilidade, controle

result is applied to the problem of stabilizability of a control system.
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1. INTRODUCTION

In many problems of engineering which have been stud-
ied in recent years, a crucial aspect is to simplify sta-
bility analysis by the use of invariant manifolds. This
problem is intimately related to the decomposition of
a given system into subsystems. It obviously consist of
two problems: 1. To establish the existence of invariant
manifolds and to find them; 2. To formulate the con-
dition under which the system as a whole is stable on
the basis of the stability behavior of the subsystems.

The first problem is a difficult one in general case,
involving partial differential equations, and only rela-
tively special cases have been treated so far (see, for
instance, [10]).

As far as the second point is concerned, mainly two
methods have been used in previous contributions: On
the on hand, there is the centre manifold theory which
has the limitation of depending strongly on the first-
order approximation of the system. On the other hand,
Lyapunov function techniques have been used in the
case of systems in triangular form (cf. M. Vidyasagar
[14]).

In the present paper, we solved the second problem

for a general nonlinear system with an invariant man-
ifold. The central result is that if the reduction of the
system to the invariant manifold itself is a stable at-
tractor, then the system as a whole is asymptotically
stable. We formulate our results for systems in R",
but the method used is applicable equally to infinite-
dimensional systems. This aspect will be presented in
a future paper in which also the question of the size of
the region of attraction will be treated.

The problem treated here plays a particularly signif-
icant role in control theory (see, for instance, [1-4] and
[6-9]) and the theory of interconnected systems (large
scaled systems), (e.g., [15]). The application considered
in this paper is to the problem of stabilization of nonlin-
ear systems. The methods used are of a kind that allows
their extension beyond the scop of finite-dimensional
systems and theorems of a strictly local nature, and
they do not depend on any linearity assumptions.

For the sake of simplicity of presentation, we for-
mulate our results in terms of time-invariant systems;
their extension to time-varying systems is just a tech-
nical matter.

For the basic theory of Lyapunov stability in the form
in which it is used here, we recommend to the reader
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to consult the book [11].

2. NOTATIONS AND DEFINITIONS
Let |- | be a norm in R™. The open ball of center z and

radius 7 and the other for a set A C R™ will be denoted
by

B(z,r) ={yeR" | ly—=z| <7}

B(A,r) :=U{B(z,r) | z € A}, (ACR"Y),
respectively.
Consider the system
@ = f(z) (1)

where x € R™ and f satisfies a local Lipschitz condi-
tion. We will use the notation z(t,z°) for the solution
of (1) with initial condition (0,2°) = x¢. We denoted
by vt (z) the positive semiorbit with initial point z; i.e.,
yH(z) = {y € R* | 3t > 0 such that z(¢,z) = y}.
Analogously for a set A C R™, v"(A) =U{y"(z) |z €
A}

Definition 0.1. A set S C R" is said to be an invariant
set for the system (1) if v*(S) C S.

Given the open set U C R™, by the restricted positive
semiorbit with initial point z, v;;(z) we mean the set
{z(t,z) | t € I}, where I, denotes the maximal interval
starting at ¢t = 0 such that x(¢t,x) € U, for all t € I.

Definition 0.2. The set S C R" is a U—invariant set
ifUNS # @ and v (SNU) C S (i.e., solutions starting
in SNU do not leave S while remaining in U ).

Definition 0.3. The U—invariant set S is uniformly
U—stable if for every e > 0 there exists § > 0 such that

xz € UNB(S,0)
implies
() C B(S,€) (2)

Definition 0.4. The U—invariant set S is uniformly
U—attracting if every positive semiorbit contained in U
tends to S; i.e. for every x € U such that I, = [0, 00),

lim d(z(t,z),S) =0

t—oo

holds, where d is the distance function (d(y,S)) =
inf{ly — z| : z€S}).

3. MAIN RESULTS

We will consider, the system (1) given in the form
71 = fi(z1,z2)
. 3
Ty = fa(w1,22), 3)

where 71 € R™, 2 € R"™™, & = (z1,22) and [ =
(f1, f2)- It will be assumed that there exists an invariant

set S which is an m— dimensional manifold defined by
smooth function h :

S . T2 = h(a:l) (4)

The invariance of S implies z2(t, z°) = h(21(t,2°)) if
20 satisfies 23 = h(2}) (see Definition 0.1). Moreover,
the invariance of S implies that h satisfies the partial
differential equation

dh - fi(z1, h(21)) = fa2(21, h(21)), (5)

where dh is the jacobian matrix.

We observe that the restriction of system (3) to the
invariant manifold S is given by the m—dimensional
system

z1 = f1(z1, h(z1)), (6)

Here we are using z; as coordinate on S (by assigning
to the point (z1,h(z1)), z1 as its coordinate). If we
suppose f(0) = 0 and h(0) = 0, then 0 € R" is an
equilibrium point of (3) which is contained in S, and
21 = 0 is an equilibrium point of (6).

We have the following results:

Theorem 0.5. Let f, h be as specified above and let U
be an open neighborhood of x = 0. We assume that S
is uniformly U—stable and x1 = 0 is an asymptotically
stable equilibrium point of (6). Then x = 0 is a stable
equilibrium point of (3).

Theorem 0.6. If the hypotheses of Theorem 0.5 are
satisfied, and in addition S U—attracting, then r = 0
is an asymptotically stable equilibrium point of (3).

The proofs of the theorems 0.5 and 0.6 had been
outlined in the context of locally compact metric spaces
(containing R™ as a special case) by the second author
([12],[13]) the next corollary was stated in [12] (for a
proof using Lyapunov functions see Vidyasagar [14]).

Consider the system

21 = fi(z1)

1’.2 = fz(xl,aig).

(7)

It is a particular case of (3) where the first equation
is independent of x.

Corollary 0.7. The point x = 0 is an asymptotically
stable equilibrium point of (7) if only if x1 = 0 and
z2 = 0 are asymptotically stable equilibrium points of

Z1 = fi(z1) (8)

and
Zz = f2(0,22) 9)
respectively.

The following example shows that this result cannot
be extended along lines one might expect in analogy
with the behavior of linear systems.
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Example 0.8. Consider the two-dimensional systems

@y = (—af + z2)ai
To = (2x§ - xg)xg,

which has {(z1,0) | z1 € R} and {(0,z2) | z2 € R}
as invariant manifolds. The origin of (10) is asymp-
totically stable with respect to each of these invariant
sets, but it is nevertheless unstable. The instability of
the origin can be shown using Persidski’s theory of sec-
tors. The two regions bounded by the curves o = 225
and To = xi’ and containing the coordinate axes in their
interior, are expellers (see [11]). The configuration of
the system is shown in Figure 1.

(10)

X =(y-xX) %
vy =@x-ny

BN

VN ‘ \
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Cursor position: (1.2, -0.473) X

The backward orbit from (-0.15, 0.0028) left the computation window.

Ready.

The forward orbit from (0.3, -0.0063) ~> = possible eq. p1. near (000015, -4.4¢-008).
The backward orbit from (0.31, -0.0083) left the computation window.

Ready.

In general, the attracting condition of the invariant
manifold S is difficult to show, unless one finds an ap-
propiated Lyapunov function. The following sufficient
condition is rather restrictive but easy to verify.

Theorem 0.9. Let system (3) with the invariant man-
ifold S = {(x1,z2) | z2 = h(z1)} be given. Let U be an
open neighborhood of the equilibrium point x = 0. If for
all (z1,z2) € U\ S the condition

(w2 = h(z1)) o (fo(w1,22)) —dho fi(z1,22) <O (11)
is satisfied then S is U—attracting.

Proof. Let (y1,y2) be a solution of (3) in the form
(7)-(8) the positive semiorbit of which is contained in
U. Then it follows from (11) using the definition of y2
and the equations (7)-(8), that

Do 021 = 235(0) 0 211) = 2022 1 (1), 92(1)) < 0.
(12)

This inequality yields the attracting property in
question using the usual Lyapunov type argument (|y2|?
being positive definite with respect to Y). O

4. APPLICATIONS TO CONTROL

Now we are going to present several applications of The-
orem 0.6 to the problems of the stabilization of nonlin-
ear systems by smooth state-feedback.

Consider a control system which is linear with respect
to control,

&= f(z)+g(z) u (13)

where z € R", u € R™, f and g are smooth functions

which are an n—vector and n X m—matrix, respectively,
and f(0) =0.

Definition 0.10. The control system (13) is said to be
stabilizable if there exists a smooth function u* : R" —
R™ with u*(0) = 0 which satisfies the condition that the
closed-loop system

&= f(z)+g(z) v (z) (14)
has the origin as a locally asymptotically equilibrium
point.

a. Triangular Systems
Systems (13) is a triangular system if it can be writ-
ten in the form

Z1 = fi(z1) + gi(x1) - wa
Zo = fa(z1,x2) + g2(x1,22) - u2 (15)

where ;1 € R!, u; € R™ and Zle n; = n and

Y mi=n
The next corollary is a direct consequence of Corol-
lary 0.7 (see [14]).

Corollary 0.11. The system (15) is stabilizable if only
if each one of the systems

ZT; = f1(0, ...,0,1‘»;) +gi(0, ...,0,1177;) s Ujq

is stabilizable.

b. Zero-dynamics
Let system (13) with an output function

z = c¢(z) (16)
where z € R? and ¢(0) = 0, be given.

Isidori and Moog [7] introduce the concept of zero-
dynamics as the internal dynamical behavior associated
with the output z(t) = 0.

In a more formal way one defines.

Definition 0.12. [7] If there is a manifold M passing
through x = 0, with the properties
i) for allz € M, c(x) =0 (i.e, M C ¢~ *(0)),

1) for all x € M, there is a u € R™ such that the
vector f(x) + g(z) - u is tangent to M,

i11) M 1is maximal with respect to 1), it), then it will be
called a zero-dynamics manifold.
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Definition 0.13. If a zero dynamics manifold exists
and there is a smooth state-feedback u*(x) defined for
all x € M, satisfying condition ii), we will call

(@) = f(z) + g(z) - u"(x)

a zero-dynamics vector field.

(17)

In the paper [7] the zero dynamics vector field was
introduced for the case that the zero-feedback u™ is
unique. The motive was to extend to nonlinear systems
the dynamical interpretation of the zeros of invertible
multivariable linear systems.

We can observe that condition ii) implies the exis-
tence of a control system defined on M, which is the
restriction to M of the system (13).

The question of stabilization of (13) using the zero-
dynamics concepts and Theorem 0.6, can be stated in
two different forms:

1. If the restricted control system defined on M is sta-
bilizable by u*(z), is it possible to find a smooth
extension to a neighborhood of z = 0, of the
function u*, such that the zero-dynamics manifold
turns out to be a stable attracting set of the closed-
loop system ?

2. If we have a feedback control function u*(z) such
that the zero-dynamics manifold M is a stable at-
tracting set for the closed-loop system, is z = 0
an asymptotically stable equilibrium point of the
restriction of the system to M?

These problems were solved by Byrnes and Isidori [4]
for systems which have the same number m of imput
and output components. We can rewrite their results
using Theorem 0.6 in the following form, in which the
condition on the linear part of the zero-dynamics vector
field no longer appears:

Theorem 0.14. If the m X m matriz dc(z) - g(x) is
nonsingular at x = 0, then there exist a unique zero-
dynamics manifold M and a unique state-feedback u™,
such that M 1is a stable attracting manifold of the closed-
loop system (14).

Theorem 0.15. We assume the ezistence of a zero-
dynamics manifold which has only one zero-dynamics
vector field defined on it. Then, if x = 0 is an asymp-
totically stable equilibrium point of the zero-dynamics
vector field, the system (18) is locally stabilizable.

Theorems 0.14 and 0.15 yield the following corollary

Corollary 0.16. If the m x m matriz dc(zx) - g(x) is
nonsingular at x = 0, then the systems (13) is locally
stabilizable if © = 0 is an asymptotically equilibrium
point of the zero-dynamics vector field.
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