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Resumo- Neste trabalho consideramos o modelo de viga não linear abstrato

µutt + δut +Aαu+M(‖A
β
2 u‖2)Aβu+ Lu = f

sobre um espaço de Hilbert separável H. Sob condições adequadas, mostramos

que o sistema dinâmico (H, St) gerado pelo modelo com f (t) ≡ f ∈ H é
dissipativo e possui um atrator global A de dimensão fractal finita.

A questão principal do trabalho é o comportamento assintótico das soluções
do problema para o caso em que as forças inerciais são pequenas respeito das
forças de resistência do meio. Esta hipótese leva, formalmente, ao problema de
primeira ordem

δut +Aαu+M(‖A
β
2 u‖2)Aβu+ Lu = f

Então, provamos que, num certo sentido, os atratores globais destes dois sis-
temas estão “perto”um do outro. Estimativas de decaimento exponencial para
ut and utt são obtidas.

Palavras-chave: Atrator global, sistema dissipativo, limite singular.

EXISTENCE OF ATTRACTORS FOR A GENERALIZED
BEAM MODEL

Abstract- In this work, we consider the nonlinear abstract beam model

µutt + δut +Aαu+M(‖A
β
2 u‖2)Aβu+ Lu = f

on a separable Hilbert space H. We show that under suitable conditions, the

dynamical system generated by this model with f (t) ≡ f ∈ H is dissipative
and possesses a global attractor A of a finite fractal dimension.

The main question discussed in this work is the asymptotic behaviour of the
solutions of the problem for the case when the inertial forces are small with
respect to the medium resistance forces. Formally, this hypothesis leads to first
order problem

δut +Aαu+M(‖A
β
2 u‖2)Aβu+ Lu = f

Then, we prove that the global attractors of these problems are close in some
sense. An exponential decay rate for ut and utt is obtained.

KeyWord: Global attractor, dissipative system, singular limit.
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1. PRELIMINARIES

In this section we give a basic theorems that we will

use throughout this paper. The concepts of dissipative

and asymptotically compact dynamical system, global

attractor, fractal dimension, trajectories, among other

concepts can be find in Chueshov (2002) and Temam

(1988).

Theorem A. Let (X, St) be a continuous dynamical

system and X be a Banach space. Assume that

(i) there exists a continuous function G : X → R
possessing the properties

ϕ1 (‖x‖) ≤ G (x) ≤ ϕ2 (‖x‖)

where ϕj : R+ → R are continuous functions

such that ϕ1 (r)→ +∞ when r →∞ ;

(ii) there exists a derivative
d

dt
G (St) for t ≥ 0 and

positive numbers µ and ρ such that

d

dt
G (Sty) ≤ −µ for ‖Sty‖ > ρ

Then the dynamical system (X, St) is dissipative.

Theorem B. Assume that a dynamical system (X, St)
is dissipative and asymptotically compact. Let B be

a bounded absorbing set of the system (X, St) . Then

the set A = ω (B) is a nonempty compact set and

is a global attractor of the dynamical system (X, St) .
Furthermore, the attractor A is a connected set in X.

Theorem C. Assume that M is a compact set in a

Hilbert space H. Let G be a continuous mapping in H
such that M ⊂ G (M) . Assume that there exists a

finite dimensional projection P in the space H such

that

‖P (Gv1 −Gv2)‖ ≤ l ‖v1 − v2‖ , ∀ v1, v2 ∈M

‖(I − P ) (Gv1 −Gv2)‖ ≤ δ ‖v1 − v2‖ , ∀ v1, v2 ∈M

where δ < 1.We also assume that l ≥ 1− δ. Then the

compact M possesses a finite fractal dimension.

2. THE MODEL

We begin by presenting PDE model to be considered.

Let H be a separable Hilbert space and we consider the

following second order in time equation utt + δut +Aαu+ g (u)Aβu+ Lu = f

u (0) = u0 , ut (0) = u1

(1)

where A is a positive operator with discrete spectrum

in H , M is a real function and L is a linear op-

erator in H whose properties will be stablished be-

low; f is a given bounded function with values in H,

g (u) = M

(∥∥∥A β
2 u
∥∥∥2
)

; α, δ and β are a positive real

numbers.

The initial value problem (1) generalizes the bound-

ary initial value problem
utt + δut + ∆2u+ g (u) ∆u+ ξ

∂u

∂xi
= f

u (x, t) = ∆u (x, t) = 0 , x ∈ ∂Ω

u (0) = u0, ut (0) = u1, x ∈ Ω

(2)

where g (u) =
(
ζ −

∫
Ω

|∇u|2 dx
)
. This model de-

scribes nonlinear oscillations of a beam Ω which is lo-

cated in a supersonic gas flow moving along the xi−
axis. The parameter ξ is determined by the velocity of

the flow. The function u measure the beam deflection

at the point x and the instant t.

3. EXISTENCE AND UNIQUENESS OF SO-

LUTIONS

We consider the initial value problem (1) and we assume

the following hypothesis

(H1) α ≥ 2β > 0

(H2) u0 ∈ D
(
A

α
2
)
, u1 ∈ H, f ∈ L∞ (0, T ;H)

(H3) M ∈ C1 (R+) and

M (z) =
∫ z

0

M (ξ) dξ ≥ −az − b

where 0 ≤ a < λ1, b ∈ R and λ1 is the first eigenvalue

of the operator A.

(H4) L : D
(
A

α
2
)
→ H is a linear operator defined on

D
(
A

α
2
)

and satisfies the condition

‖Lu‖ ≤ C
∥∥Aα

2 u
∥∥ , ∀ u ∈ D

(
A

α
2
)

We define the space

Wα (0, T ) =
{
ϕ ∈ L2

(
0, T ;D

(
A

α
2
))

; ϕ′ ∈ L2 (0, T ;H)
}

which is a Banach space with the norm

‖ϕ‖2Wα(0,T ) = ‖ϕ‖2
L2

(
0,T ;D

(
A

α
2

)) + ‖ϕ′‖2L2(0,T ;H)
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Definition. We say that the function u ∈ Wα (0, T )
is a weak solution of problem (1) on the interval [0, T ]
if u (0) = u0 and the equation

−
∫ T

0

(u′ + δu, ψ′) dt+
∫ T

0

(
A

α
2 u,A

α
2 ψ
)
dt (3)

+
∫ T

0

M

(∥∥∥A β
2 u (t)

∥∥∥2
)(

A
β
2 u (t) , A

β
2 ψ (t)

)
dt

+
∫ T

0

(Lu (t) , ψ (t)) dt

= (u1 + δu0, ψ (0)) +
∫ T

0

(f (t) , ψ (t)) dt

holds for any function ψ ∈ Wα (0, T ) such that

ψ (T ) = 0.
Using the compactness method (see Lions (1969))

we prove the following assertion on the existence and

uniqueness of weak solutions to problem (1).

Theorem D. Assume that hypothesis (H1) − (H3)
hold and let T be a positive real number. Then the

problem (1) has a unique weak solution u in the class

u ∈ C
(
[0, T ] ;D

(
A

α
2
))
∩ C1 ([0, T ] ;H) (4)

and satisfies the energy equality

E (u (t) , u′ (t)) = E (u0, u1) + (5)

+
∫ t

0

[
−δ ‖u′ (s)‖2 + (−Lu (s) + f (s) , u′ (s))

]
ds

where the energy functional E : H×H → R is defined

by

E (ϕ,ψ) =
1
2

[∥∥Aα
2 ϕ
∥∥2

+ ‖ψ‖2 +M
(∥∥∥A β

2 u
∥∥∥2
)]
(6)

In the stationary case f (t) ≡ f we can define an

evolutionary operator St of problem (1) in the space

H = D
(
A

α
2
)
×H by

Sty = (u (t) , u′ (t)) (7)

for y = (u0, u1) ∈ H, where u is a weak solution to

problem (1) with initial conditions y = (u0, u1) .
Due to the uniqueness of weak solutions St satisfies

the semigroup properties

St ◦ Sr = St+r , S0 = I , t, r ≥ 0

4. THE MAIN RESULT

In addition to the hypothesis (H1)−(H4) stated above

we assume further that

(H5) there exists positive constants γ, a1, a2 and a3

such that

M (z)− a1

∫ z

0

M (s) ds ≥ a2z
1+γ − a3

(H6) there exists 0 ≤ θ < β

2
and C > 0 such that

‖Lu‖ ≤ C
∥∥∥A β

2 +θu
∥∥∥ , ∀ u ∈ D

(
A

α
2
)

(H7) for some σ > 0 we have

f ∈ D (Aσ) , LD (Aσ) ⊂ D (Aσ)

‖AσLu‖ ≤ C
∥∥Aα

2 u
∥∥

In order to establish our main result we give the fol-

lowing preliminary results:

Theorem 1. Suppose that the hypothesis (H1) −
(H3) , (H5) and (H6) are fulfilled. Then the dynam-

ical system (H, St) generated by (1) with f (t) ≡ f ∈
H is dissipative.

Proof. The proof of this theorem is based in Theorem

A. In this sense, is sufficient to show that there exists

a functional V : H → R which is bounded on the

bounded sets of the space H, differentiable along the

trajectories of system (1) and such that

V (y) ≥ ρ ‖y‖2H − C1 (8)

d

dt
V (Sty) + εV (Sty) ≤ C2 (9)

where ρ, ε > 0 and C1,C2 ≥ 0 are constants.

Let

V (y) = E (y) + νΦ (y) (10)

where y = (u0, u1) ∈ H , E is the energy defined in

(6), Φ is a functional defined by

Φ (y) = (u0, u1) +
δ

2

∥∥Aα
2 u
∥∥2

and ν is a parameter that will be chosen below.

Using elementar inequalities is easy to proof that the

function V satisfies conditions (8) and (9).

Theorem 2. Suppose that the hypothesis (H1) −
(H3) , (H5) − (H7) are fulfilled. Then there exists

a positively invariant bounded set Kσ in the space

Hσ = D
(
A

α
2 +σ

)
×D (Aσ) which is closed in H and

such that

sup {distH (Sty,Kσ) ; y ∈ B} ≤

≤ C exp
(
−δ

4
(t− tB)

)
(11)

3 Universidade Tecnológica Federal do Paraná
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for any bounded set B in the space H and t > tB .

Proof. Since the system (H, St) is dissipative by

Theorem 1, there exists R > 0 such that

‖u′ (t)‖2 +
∥∥Aα

2 u (t)
∥∥2 ≤ R2 , (12)

for all y ∈ B and t ≥ t0 = t0 (B) , where u is a weak

solution of (1) with initial conditions y = (u0, u1) ∈ B,
being B a bounded set of H.

Denoting by U the semigroup generated by the ho-

mogeneous problem associated to (1) we can to prove

that there exists N0 ≥ 0 such that

‖(I − πN )U (t, τ) ξ‖Hσ
≤ C ‖ξ‖Hσ

exp
(
−δ

4
(t− τ)

)
(13)

for N ≥ N0, t ≥ τ ≥ t0, and πN is a orthogonal

projection in H onto

span {(wk, 0) , (0, wk) , k = 1, 2, . . . , N}

and {wk}k∈N is the orthonormal basis of the eigenval-

ues of the operator A in H.
Then following the ideas exposed in Temam (1988)

we obtain a number Rσ depending on the radius of

dissipativity R such that the vector

Sty − (I − πN0)U (t, t0)St0y =

= πN0Sty + (I − πN0)G (t, t0; y)

lies in the ball Bσ =
{
y ; ‖y‖Hσ

≤ Rσ
}

for t ≥ t0,
where G is given by

G (t, t0; y) = −
∫ t

t0

U (t, s) (0, Lu (s)− f) ds

From (12) and (13) we can easily deduce that

distH (Sty,Bσ) ≤ CR exp
(
−δ

4
(t− t0)

)
Taking Kσ = γ+ (Bσ) =

⋃
t≥0

St (Bσ) we can verify

that all conditions of Theorem 2 are satisfied by Kσ.

Theorem 3. Suppose that the hypothesis

(H3) ,(H5) , (H6) and (H7) are fulfilled. Then

the dynamical system (H, St) generated by prob-

lem (1) possesses a global attractor A of a finite

fractal dimension. This attractor is a connected

compact set in H and is bounded in the space

Hσ = D
(
A

α
2 +σ

)
× D (Aσ) where σ > 0 is defined

by (H7) .

Proof. The existence of global attractor and the fact of

that this attractor is a connected compact set in Hand

is bounded in the space Hσ = D
(
A

α
2 +σ

)
×D (Aσ)is

consequence of Theorem B jointly with Theorems 1 and

2. Then we should prove only the finite dimensionality

of the attractor. In order to obtain the finite dimen-

sionality of the attractor A we will use the Theorem

1.3. With this aim we proceed in three steps:

Step 1. For any pair of semitrajectories

{Styj ; t ≥ 0}, j = 1, 2, possessing the property

‖Styj‖ ≤ R for all t ≥ 0 the estimate

‖Sty1 − Sty2‖H ≤ exp (a0t) ‖y1 − y2‖H , t ≥ 0

holds with the constant a0 depending on R.

Step 2. For any y1,y2 ∈ Kσ the inequality

‖(I − πN ) (Sty1 − Sty2)‖H ≤

≤ a1

(
1 +

qσ exp (a2t)
λσN+1

)
exp

(
−δ

4
t

)
‖y1 − y2‖H ,

hold for all N ≥ N0 being qσ,a1 and a2 positive

constants.

Step 3. Finally, let us choose t0 and N ≥ N0 such

that

a1 exp
(
−δ

4
t0

)
=
µ

2
, qσλ

−σ
N+1 exp (a2t0) ≤ 1 , µ < 1

then the steps 1 and 2 enable us to state for y1 and y2

lie in the global attractor A that

‖St0y1 − Sty2‖H ≤ l ‖y1 − y2‖H , with l = exp (a0t0)

and

‖(I − πN ) (St0y1 − St0y2)‖H ≤ µ ‖y1 − y2‖H

Applying Theorem C with M = A, G = St0 , and

P = πN we obtain the finite dimensionality of the

global attractor A.
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