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Abstract- Differential and integral elastic plates equations are frequently performed using 
numerical methods like the Finite Element Method (FEM) or the Boundary Element 
Method (BEM). One of the main differences between these techniques is a direct treatment 
of boundary value problem in BEM analysis. It must be pointed out that corner forces are 
introduced in the direct boundary integral equation when polygonal plates are studied using 
classical theory. This parameter appears as a consequence of classical plate hypothesis in 
which curvatures are related with the second derivative of the out-of-plane displacement and 
it is the necessary condition to reduce boundary variables. However, when thick plate theory 
is considered curvatures are not directly related with out-of-plane displacement derivative 
and no corner forces are introduced even in BEM analysis. Further, three boundary 
conditions should be satisfied in thick plate analysis rather than two of classical theory. This 
study intends to present results obtained from plate bending problems using classical and 
thick plate theories in order to understand the differences in plate behavior due the features 
above mentioned. The classical plate analysis will be performed using Danson’s 
fundamental solutions and Reissner theory will be used in thick plate’s analysis with 
Weeën’s fundamental solution. The numerical implementation is carried out for continuous 
or discontinuous isoparametric linear elements. A classical example is solved to show the 
aim of this paper and the results are compared with those available in the literature. 
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O Método Direto dos Elementos de Contorno Aplicado a Equações 

Diferenciais e Integrais de Placas Finas e Espessas 
 

Resumo- Equações diferenciais e integrais de placas elásticas são frequentemente 
resolvidas usando métodos numéricos como o Método dos Elementos Finitos (MEF) ou o 
Método dos Elementos de Contorno (MEC). Uma das principais diferenças entre essas 
técnicas é o tratamento do problema de valor de contorno na análise pelo MEC. Isso fica 
evidenciado quando forças de canto são introduzidas na equação integral de contorno 
quando placas poligonais são estudadas pela teoria clássica. Este parâmetro aparece como 
uma conseqüência das hipóteses clássicas da placa no qual as curvaturas são relacionadas 
com a segunda derivado dos deslocamentos fora do plano. Assim as forças de canto tornam-
se uma condição necessária para a redução das variáveis de contorno. Entretanto, quando a 
teoria de placas espessas é considerada, as curvaturas não são diretamente relacionadas com 
a derivada do deslocamento fora do plano e as forças de canto desaparecem na análise pelo 
MEC. Além disso, três condições de contorno devem ser satisfeitas na placa espessa ao 
invés das duas da teoria clássica. Este estudo pretende apresentar resultados obtidos de 
problemas de flexão de placas usando a teoria clássica e a teoria de placas espessas no 
sentido de entender as diferenças no comportamento da placa devido aos fatores 
anteriormente mencionados. A análise da placa clássica será feita usando a solução 
fundamental de Danson e a teoria de Reissner será usada na análise da placa espessa 
juntamente com a solução fundamental de Weeën. A implementação numérica é feita 
usando elementos isoparamétricos contínuos e descontínuos. Um exemplo clássico é 
resolvido e os resultados são comparados com aqueles presentes na literatura. 
 

Palavras-chave: Equações Diferenciais e Integrais, Placa Fina e Espessa, Elementos de Contorno. 
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1. INTRODUCTION 

 
Thin plate analysis is widely used with BEM since 
Bézine (1978) or Danson (1979). It must be 
pointed out that thin plate analysis makes use of 
out-of-plane displacement derivatives in 
constitutive equations. Thus, two boundary 
condition needs to be satisfied to obtain one-value 
solution. On the other hand, thick plates are 
considered in BEM analysis since Weeën (1982) 
that introduced a formulation based in Reissner 
theory (1945). It must be pointed out that Reissner 
conceived his theory from an assumed stress 
distribution and got the corresponding strains using 
plane strain relations. Because of this assumption 
rotations and displacements represent weighted 
averages of actual displacements.  
However, curvatures are not directly related with 
out-of-plane displacement derivative in the 
constitutive equations and no corner forces are 
introduced even in the boundary value problem of 
a polygonal plate. But, three boundary conditions 
should be satisfied in thick plate analysis rather 
than two of classical theory. The BEM 
formulations for thick plates had received several 
contributions along the years like the hypersingular 
formulation (Rashed, 1998) and a strategy to 
consider any thickness plate with Reissner theory 
(1945). Besides the numerical analysis, when a 
plate is analyzed for structural design purposes an 
engineer deals with a decision about the proper 
treatment of corner forces or if the corner forces 
should be included in the group of actual plate 
forces (Sanches, 2007). This paper intends to 
discuss this feature by mean of BEM analysis. 
 
 
2. PLATE EQUATIONS 
 
The faces of the plate are taken to be free from 
tangential traction but under normal pressures q, 
σσσσαααα3 is zero and σσσσ33 is equal to 0.5q in both faces. 
These expressions will be presented using the same 
notation used by Weeën (1982) or the Latin indices 
take values {1, 2, 3} and Greek indices in the 
range {1, 2}. A plate of uniform thickness is 
referred to midline coordinates xαααα and thickness 
coordinate x3.  
The equilibrium equations for an infinitesimal plate 
element under a distributed transverse loading q 
are given by 
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The equilibrium equations are valid in both thin 
and thick plate’s theory. The transverse shearing 
(Qαααα), the bending and twisting moments (Mααααββββ), all 
per unit of length, have similar definition in both 
theories. In thin plate theory, the constitutive 
relations in terms of out-of-plane displacement w 
are 
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were D is the flexural rigidity, E is the Young 
modulus, h the thickness and νννν is the Poisson’s 
ratio. 
The Reissner's theory assumes a known stress 
distribution over the thickness and the used 
displacements are weighted averages of the actual 
displacements vi in the reference coordinates 
directions 
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The constitutive relations obtained from a plane 
strain problem in an elastic body must be written in 
terms of displacements (φφφφαααα, w) and are given by 
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λλλλ is a constant related to shear effect; it is equal to 

h10  in Reissner's theory. 
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Besides when the BEM analysis is performed, the 
direct boundary integral equation for a thin plate is 
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Ka depends only upon the geometry of the 
boundary at x and it equals 0.5 for the case of a 
continuous tangent; the number of corners is Nc; 
Rci is the corner reaction that is related to twisting 
moment Mns in the forward (F) and backward (B) 
neighborhood with reference to the corner i. w* is 
the Danson’s fundamental solution to out-of-plane 
displacement due a unit point load 
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In thin plate formulation, when an uniform domain 
load was applied, there was used a conversion into 
a boundary integral 
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Using the concept of generalized displacements 
and forces due to Ween, the integral equation for 
thick plates may be written as 
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where uαααα is φφφφαααα, u3 is w, tαααα is the product Mααααββββ.nββββ, t3 
is the product Qαααα.nαααα and the differentials ds(y) and 
dΩΩΩΩ(y) denote boundary and domain differentials 
respectively.  
 
The used fundamental solutions are given by 
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In thick plate formulation, when a uniform domain 
load was applied, there was used a Weeën’s 
conversion into a boundary integral: 
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3. BEM FORMULATION AND 

IMPLEMENTATION 
 
The numerical implementation of equations (7) and 
(11) used isoparametric linear elements that 
presented good results in Palermo (1992) for thin 
plate analysis and in Sanches (1999) and (2007) 
for thick plate analysis. All nodal parameters were 
placed at the ends of the element and when 
discontinuous boundary elements were used the 
collocation points were shifted to element inside at 
a distance equal to a quarter of element length. In 
thin plate implementation there is necessary to use 
a number of integral equations equal to a double of 
the nodes number plus an equation for each corner 
reaction of the problem. The equation (7) was 
written at boundary nodes and at external points. 
The external points were placed at a distance equal 
to a quarter of element length and in normal 
direction from each boundary node. In thick plate 
implementation there is necessary to use a number 
of integral equations equal to three times the nodes 
number. The equation (11) was written at external 
points for each one of the fundamental solutions 
(Sanches, 1999). The external points were placed 
at a distance equal to a quarter of element length 
and in normal direction from each boundary node. 
The algebraic equation is 
 
     
     (17) 
 
The discrete boundary integral equation (17) 
describing the out-of-plane bending effect may be 
discretized as follows, 
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The upper indices p on the coefficient matrices H 
and G stand for thin plate mechanisms. The thin 
plate displacement normal to the x1-x2 plane is w 
and its derivative with respect to the boundary 
normal n is w,n. The corresponding generalized 
forces are the shear forces Vn and the bending 
moment Mn. The boundaries described by equation 
(17) were discretized by rectilinear boundary 
elements described by linear shape functions. 
Considering B1 and B2 the initial and final 
coordinates of the elements, the isoparametric 
element geometry may be expressed in terms of 
intrinsic coordinates, ς: 
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This same interpolation is used for the field 
variables of the boundary elements possessing no 
corners, leading to an isoparametrical formulation. 
For elements with corners the field variables were 
discretized by discontinuous elements. The corner 
nodes were displaced towards the interior by one 
fourth of the element length (1/4Le). In this case, 
two integral equations were written for every 
boundary node. The collocation points were placed 
outside the plate domains, at distances d1 and d2, 
respectively. A final algebraic system is obtained 
once the equations are assembled and the 
prescribed boundary conditions applied. The 
solution of this algebraic system contains all 
unknown boundary quantities. 
 
 
4. RESULTS 

 

A simply supported square plate was loaded with a 
uniformly distributed load (q) over the domain that 
is equal to 1 kN/m2 (Figure 1). The Poisson’s ratio 
was adopted equal to zero. The plate side was 2 m 
long (a = 1m) and the thickness was 0,02 m. The 
boundary of the plate was divided into 12, 24 and 
40 elements. Discontinuous boundary elements 
were used around the corners or two nodes at each 
corner. 
 

 
 

Figure 1: Square Plate loaded with a uniformly 
distributed load q. 

 
 
The Figure 2 to present the first discretization 
adopted. 
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Figure 2: Discretization with 12 isoparametric 

boundary elements. 
 
In the thin plate analysis, the maximum out-of-
plane displacement (Figure 3) or the displacement 
at the central point was 0.27% different from the 
Timoshenko’s solution, (1959). The bending 
moment Mxx in this point which is equal to Myy 
was 0.11% different from Timoshenko (1959). In 
the thick plate analysis, the maximum out-of-plane 
displacement or the displacement at the central 
point was 0,30% different from, Timoshenko 
(1959). 
 

 
Figure 3: Thin plate out-of-plane displacement. 

 
The plate bending moment Mxx in this point which 
is equal to Myy was 0,12% different from 
Timoshenko (1959) (Figure 4).  
 

 
Figure 4: Thin plate bending moment Mxx. 

 
Unless the solution presented in Timoshenko 
(1959) and Sanches (2007) was done according to 
thin plate theory, the agreement between the results 
in thick plate model is to note the behavior 
represented is close to a thin plate analysis. 
 
 

5. CONCLUSION 
 
It must be remembered that solutions for thin 
plates presented by Timoshenko for simply 
supported plates are due to Navier or Lévy. In 
Timoshenko (1959), there is a reference about 
explanations by Kelvin and Tait. These authors 
pointed out about local effect of forces due the 
couples which leaves the stress condition of the 
rest of plate unchanged. Navier or Lévy used a sum 
of trigonometric functions to represent the plate 
behavior. When Navier solution for a sinusoidal 
load is considered and the resultant of the Vertical 
Reaction is integrated over the plate boundary 
there was necessary to add corner forces to get the 
equilibrium with the external load. Thus, the final 
response from Navier is a sum of a trigonometric 
solution plus two singularity solution (i.e., the 
corner forces) on each side.  
In this point, is necessary to introduce the BEM 
analysis which provides a proper treatment of 
singularities. Hence, structural engineers should 
take it into account and understand how the thin 
plate model responses on the vertical pressure 
distribution must be considered. But, if vertical 
pressure distribution is important in a problem the 
better analysis would be made whether the thick 
plate theory was used. Finally, the authors believed 
the obtained result must be improved in numerical 
analysis by mean of quadratic elements or special 
numerical treatments but the essential structural 
point of view included here will be the same. 
 
 
REFERENCES 
 
BÉZINE, G.; GAMBY, D. A. A New Integral 

Equation Formulation for Plate Bending 

Problems, Recent Advances in Boundary Element 
Method, Pentech Press, London, (1978). 
 
DANSON, D. J. Analysis of Plate Bending 

Problems by Direct Boundary Element Method, 
Southampton, UK, Dissertation (M. Sc.), 
University of Southampton, (1979). 
 
PALERMO JR. L.; RACHID, M.; VENTURINI, 
W. Analysis of Thin Walled Structures Using the 
Boundary Element Method, Engineering Analysis 

with Boundary Element, (1992). 
 
RASHED, Y.F.; ALIABADI, Y.F.; BREBBIA, 
C.A. Hypersingular Boundary Element 
Formulation for Reissner Plates, International 
Journal of Solids and Structures, (1998). 
 

 

x1 

x2 



Synergismus scyentifica UTFPR, Pato Branco, 04 (2) . 2009 

13º  Encontro Regional de Matemática Aplicada e Computacional - XIII ERMAC 

Universidade Tecnológica Federal do Paraná 6 

REISSNER, E. The Effect of Transverse Shear 
Deformation on the Bending of Elastic Plates, 
Journal of Applied Mechanics, (1945). 
 
SANCHES, L. C. F.  Application of the Direct 
Boundary Element Method to Differential and 
Integral Plate Equation. In…I SRMAIS, Ilha 
Solteira, Brazil, (2007). 
 
SANCHES, L. C. F.; PALERMO JR. L. Some 
Results from Moderately Thick Plate Analysis with 
the BEM, 6th Pan American Congress of 

Applied Mechanics, Rio de Janeiro, Brazil, 
(1999). 
 
TIMOSHENKO, S. P.; WOINOWSKY-
KRIEGER, S. Theory of Plates and Shells, 
McGraw-Hill Book Company, New York, 2nd 
Edition, (1959). 
 
WEEËN, F.  Application of the direct boundary 
element method to Reissner’s plate model, 
International Journal for Numerical Methods 

in Engineering, Vol.18, (1982). 
 

 


