EFICIÊNCIA DE FUNGICIDAS NO CONTROLE DA ANTRACNOSE (Colletotrichum dematium var. truncata) DA SOJA (Glicine max)

Paulo Adami(2); Idalmir dos Santos(1); Marcia Franchin(2); Laércio Sartor(2) Diogo Tartaro(2); Evandro Nunes(2) & Fernando Xavier(2)

(1) Eng. Agrônomo, Dr em Fitopatologia, Curso de Agronomia, Universidade Tecnológica Federal do Paraná – Unidade do Sudoeste, Campus de Pato Branco.
(2) Acadêmicos do 4º Ano do Curso de Agronomia da Universidade Tecnológica Federal do Paraná, Unidade do Sudoeste, Campus de Pato Branco.

paulof_adami@hotmail.com; laerciosartor@hotmail.com

Resumo - Com o objetivo de avaliar a eficiência de fungicidas no controle da Antracnose da soia (Colletotrichum dematium var. truncata), foi executado um compreendido entre os meses de novembro de 2005 e maio de 2006, na região sudoeste do Paraná, município de Pato Branco. Utilizou-se a cultivar de soja BRS 234, sendo o delineamento de blocos ao acaso com quatro repetições e 15 tratamentos. Os fungicidas foram aplicados em dois momentos, primeira aplicação em estagio R1 e segunda em R4/R5.1. Foram feitas avaliações de incidência e severidade antes de cada aplicação e em estágio R7, além das avaliações: produção de grãos, número de vagens por planta e peso de 100 sementes. A maior produtividade de grãos foi obtida no tratamento com Sphere®, Cerconil® e Score®. Todos os tratamentos tiveram maior produção que a testemunha e os fungicidas demonstraram algum controle na antracnose da soia.

Palavras-Chave – Antracnose na soja, Colletotrichum dematium, fungicidas.

EFICIÊNCIA DE FUNGICIDAS NO CONTROLE DA ANTRACNOSE (Colletotrichum dematium var. truncata) DA SOJA (Glicine max)

1. INTRODUÇÃO

Entre os principais fatores que limitam a obtenção de altos rendimentos em soja (*Glycine max*) estão as doenças. Aproximadamente quarenta doenças causadas por fungos, bactérias, nematóides e vírus já foram identificadas no Brasil. A importância econômica de cada doença varia a cada ano e entre as diferentes regiões produtoras, dependendo das condições climáticas de cada safra, manejo e época de cultivo. As perdas anuais de produção por doenças são estimadas em cerca de 15% a 20%, entretanto, algumas doenças podem ocasionar perdas de quase 100% (EMBRAPA, 2003).

A antracnose, causada pelo fungo *Colletotrichum dematium* var. *truncata*, é uma das principais doenças da soja que afeta a fase inicial de formação das vagens. Sob condições de alta umidade causa apodrecimento, queda e abertura das vagens imaturas, assim como a germinação dos grãos em formação. Pode causar perda total da produção, mas com maior freqüência, causa alta redução do número de vagens e induz a planta à retenção foliar e haste verde. Além das vagens, o *C. dematium* infecta a haste e outras partes da planta, causando manchas castanho escuras (GALLI *et al.*, 2005).

As plantas podem ser infectadas em todos os estágios de desenvolvimento. Quando o fungo é transmitido pela semente, notam-se os primeiros sintomas logo após a germinação e muitas sementes apodrecem antes da emergência. Nas plântulas que emergem, aparecem lesões necróticas de cor cinza a negra, deprimidas nos cotilédones, podendo causar a morte das plantas (REIS, FORCELINI, REIS, 2001). Em plantas maiores as lesões aparecem no caule, ramos e vagens, iniciando-se com pontuações avermelhadas que vão aumentando e causam o estrangulamento das partes afetadas. Na face inferior das folhas podem ser

encontradas nervuras necrosadas de coloração negra. Nas vagens aparecem lesões de forma indefinida e de coloração castanho-escura, recobertas de acérvulos, cujas numerosas setas de cor negra facilitam a identificação da doença. Vagens atacadas no início de sua formação podem não produzir sementes e em casos de maior maturação a qualidade das mesmas é afetada (REIS, FORCELINI, REIS, 2001).

Dentre as medidas de controle podemos citar a rotação de culturas, tratamento de sementes, população adequada (250.000 a 300.000 plantas.ha⁻¹), manejo adequado do solo e o tratamento químico com fungicidas.

Muitos trabalhos, conduzidos a campo, revelaram diferenças na eficiência de fungicidas no controle de patógenos em função do grupo químico, dose e época de aplicação. São poucos os trabalhos que avaliaram o controle químico da antracnose da soja, especialmente na região Sul do Brasil e Sudoeste do Paraná, principalmente em função das dificuldades em se avaliar o controle dessa doença, que depende da ocorrência e infecção do patógeno na cultura, sob as condições ideais de ambiente. Outro problema foi o aparecimento da ferrugem asiática o que pode prejudicar a obtenção de resultados correspondentes a antracnose, uma vez que os fungicidas, na maioria, são dos mesmos grupos químicos para controle dessas doenças e a ferrugem pode provocar a queda de folhas e diminuição da produção, interferindo nas avaliações para antracnose.

O objetivo desse trabalho foi verificar a eficiência de 14 fungicidas de diferentes grupos químicos e dosagens, no controle da antracnose da soja (*C.* var. *truncata*).

2. MATERIAL E MÉTODOS

O ensaio foi realizado na safra de verão 2005/2006 na estação experimental da UTFPR, Unidade do Sudoeste, Campus de Pato Branco.

As parcelas experimentais mediam 2,25 metros de largura e 6,0 metros de comprimento (13,5 m²). Utilizou-se plantas de soja (*Glycine max*) da cultivar BRS 234, cultivadas em espaçamento de

Os tratamentos constaram de 13 fungicidas diferentes, com um deles (Opera®) aplicado em duas doses, mais a testemunha, totalizando 15 tratamentos (Tabela 1). Os fungicidas foram aplicados com pulverizador costal pressurizado com CO₂, barra com quatro bicos Jacto série AVI 110-02 (plano), calibrado para vazão de 200 l.ha⁻¹, sendo a primeira pulverização realizada quando as plantas estavam no estádio em R1 e a segunda, em R4/R5 1.

Tabela 1: Fungicidas correspondentes a cada tratamento com respectivo ingrediente ativo e dosagem (l.ha-1 do p.c). UTFPR – Pato Branco, 2006.

	Produto Comercial	Ingrediente Ativo	Dose I.ha (p.c.)
1	Testemunha		0,0
2	Cerconil [®]	Tiofanato metílico + clorotalonil	2,0
3	Celeiro/Imp.Duo®	Flutriafol + tiofanato metílico	0,6
4	Cercobin 500 SC®	Tiofanato metílico	0,8
5	Derosal [®]	Carbendazin	0,8
6	Opera® (Dose 0,5)	Pyraclostrobin + epoxiconazole	0,5
7	Opera® (Dose 0,6)	Pyraclostrobin + epoxiconazole	0,6
8	Nativo®	Trifloxystrobin + tebuconazole	0,6
9	Sphere [®]	Trifloxystrobin + ciproconazole	0,4
10	Priori Xtra®	Azoxystrobin + ciproconazole	0,3
11	Score [®]	Difenoconazole	0,3
12	Proline [®]	Protioconazole	0,4
13	Artea [®]	Ciproconazole + propiconazole	0,3
14	Impact [®]	Flutriafol	0,5
15	Domark [®]	Tetraconazole	0,5

Foram feitas avaliações de incidência e severidade da doença, antes (R1) e alguns dias após as aplicações (estágio da cultura R6/R7). Coletaram-se 15 plantas ao acaso, dentro da área útil do experimento e posteriormente, avaliou-se, na planta, terço inferior, médio e superior, as folhas, colmos e vagens.

Para controle da Ferrugem asiática (*Phakopsora pachyrhizi*), fez-se uma pulverização com 0,3 l.ha⁻¹ de Impact[®] (Triazol) em estagio R5.

No final do ciclo da cultura, na colheita, avaliou-se o número de vagens por planta, peso de 100 sementes e produtividade de grãos, sendo a coleta feita no centro de cada parcela.

Foi utilizado delineamento experimental de blocos ao acaso, com quatro repetições. Os resultados foram submetidos a análise de variância e comparações de médias feitas pelo teste Tukey a 5% de significância.

3. RESULTADOS E DISCUSSÃO

Devido às condições climáticas pouco favoráveis, a ocorrência da antracnose não foi tão expressiva. A testemunha apresentou severidade de 11,37% na folha e colmo, diferindo (P<0,05) dos demais tratamentos que apresentaram controle eficiente. Sendo baixa a ocorrência da doença (Tabela 2), aliada às condições de clima desfavorável à mesma, com a primeira aplicação atuando, provavelmente, como preventiva ao ataque do patógeno, assim como a aplicação do Triazol para controle da Ferrugem Asiática, a diferença entre fungicidas não foi tão distante para os fatores avaliados.

Tabela 2: Avaliação da ocorrência de Antracnose (*Colletotrichum dematium* var. *truncata*) na soja antes da primeira aplicação (pré-spray). UTFPR – Pato Branco, 2006.

	FOLHA		COLMO		
	Incidência (%)	Severidade (%)	Incidência (%)	Severidade (%)	
Terço inferior	15	1,75	83	3,83	
Terço médio	12	0,80	52,30	3,80	
Terço superior	10	0,53	14,22	3,66	

Na severidade em vagens, os tratamentos apresentaram comportamentos diferentes, sendo que o fungicida Domark[®] foi de maior eficiência, porém, não diferiu (P>0,05) do Opera 0,5, Impact, Cercobin[®], Proline[®], Artea[®], Sphere[®], Score[®], Derosal[®], Opera[®] 0,6 e Priori Xtra[®], diferindo significativamente (P<0,05) de Nativo[®], Celeiro[®] e Cerconil[®] que apresentaram índice de controle inferior.

Com relação à produtividade, a testemunha apresentou o menor valor (2173,44 Kg.ha⁻¹), porém, não diferiu (P>0,05) dos tratamentos com Score[®], Cerconil[®], Derosal[®], Cercobin[®] e Artea[®], conforme Tabela 3. Os demais tratamentos obtiveram uma produtividade superior, variando entre 3007 Kg.ha⁻¹ e 3431 Kg.ha⁻¹.

Na avaliação do peso de 100 sementes, obtiveram-se variações entre 19,80 a 21,85 gramas, não havendo diferença significativa (P<0,05) entre os tratamentos testados, embora a maioria dos tratamentos com fungicidas mostrou tendência de maior peso das sementes, a exemplo do Prior Xtra® com 21,85 gramas e Opera® com 21,77 gramas.

Tabela 3: avaliações de produtividade da soja, peso de 100 sementes, número de vagens por planta, severidade de ataque nas folhas, no colmo e nas vagens. UTFPR – Pato Branco, 2006.

Tratamento	Produtividade (kg.ha ⁻¹)	Peso 100 Sementes (g)	N° vagens/ planta	Severidade (%) Folha/colmo/vagem	
Testemunha	2173,44 c	19,80 a	47 ab	11,37 a	11,84 a
Cerconil [®]	2590,69 bc	20,40 a	46 ab	5,80 b	7,77 b
Celeiro/Imp.Duo®	3231,25 ab	21,37 a	39 b	5,47 b	6,30 bc
Cercobin 500 SC®	2750,00 abc	20,80 a	46 ab	4,05 b	3,89 cde
Derosal [®]	2706,25 abc	20,82 a	48 ab	3,17 b	4,55 cde
Opera [®] (dose 0,5)	300,70 ab	21,77 a	49 ab	3,00 b	3,19 e
Opera® (dose 0,6)	3348,44 a	20,70 a	55 ab	2,68 b	4,77 cde
Nativo®	3145,31 ab	21,65 a	52 ab	4,26 b	6,03 bcd
Sphere [®]	3431,25 a	21,37 a	68 a	4,26 b	4,27 cde
Priori Xtra®	3143,75 ab	21,85 a	62 a	3,86 b	5,12 bcde
Score [®]	2217,19 c	19,95 a	50 ab	5,44 b	4,43 cde
Proline [®]	3184,37 ab	20,70 a	48 ab	3,70 b	4,01 cde
Artea [®]	2776,56 abc	20,62 a	52 ab	4,40 b	4,26 cde
Impact [®]	3014,06 ab	21,07 a	54 ab	4,31 b	3,35 de
Domark [®]	3407,81 a	21,25 a	60 ab	3,32 b	2,93 e
CV	9,76%	5,74%	17,15%	16,12%	11,63%

^{*}Letras minúsculas nas colunas diferem entre si pelo teste Tukey a 5% de significância.

Para o número de vagens por planta verificou-se que os fungicidas Sphere® e Priori Xstra® obtiveram os maiores valores (68 e 62 respectivamente), porém, não diferiram (P>0,05) dos demais, exceto de Celeiro/Imp.Duo® que teve o menor número de vagens por planta (Tabela 3).

KLINGELFUSS & YORINORI (2001) observou que a incidência de *C. truncatum* não resultou da época de pulverização do fungicida, nem do fungicida sobre a infecção latente. Isso, possivelmente, está relacionado com o déficit hídrico e as altas temperaturas durante o ensaio, que podem ter afetado a progressão da doença.

As pequenas diferenças observadas entre os tratamentos podem ser explicadas pela baixa incidência da antracnose na soja, provavelmente resultante das condições ambientais desfavoráveis à disseminação e à infecção durante o período de avaliação, além da ocorrência da ferrugem asiática que interferiu nas avaliações por ter sido necessária a aplicação de um fungicida (Impact®) que fez parte de um dos tratamentos.

4. CONCLUSÕES

Todos os fungicidas influenciaram no controle da antracnose da soja, diminuindo a severidade da doença quando comparados com a testemunha.

A variação de produtividade entre o melhor tratamento (Sphere®) e o pior tratamento que foi a testemunha foi de 1258 Kg/ha⁻¹; entre fungicidas a variação de produtividade também foi expressiva, variando em 1214 Kg/ha⁻¹ entre o melhor e o pior tratamento (Score®). Conclui-se que houve diferença significativa (P<0,05) entre fungicidas, embora alguns tiveram resultados semelhantes estatisticamente, sendo que nem todos obtiveram resultados eficientes.

5. REFERÊNCIAS

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Soja. Tecnologias de produção de soja. Londrina, 2003. 195p.

GALLI, J.A.; PANIZZI, R. C.; FESSEL, S. A.; SIMINI, F.; FUMIKO, I. Efeito de *Colletotrichum dematium* var. *truncata* e *Cercospora kikuchii* na germinação de sementes de soja. Revista Brasileira de Sementes. v.27, n.2. Pelotas, RS, 2005.

KLINGELFUSS, L. H.; YORINORI, J. T. Infecção Latente de *Colletotrichum truncatum* e *Cercospora kikuchii* em soja. Fitopatologia Brasileira. v.26. n.2. Brasília, junho de 2001.

REIS, E.M.; FORCELINI, C.A.; REIS,A.C. Manual de Fitopatologia. v. 2. 4.ed. Editora: Insular, Florianópolis, SC, 2001.